Виды контрольно измерительных приборов

Классификация измерительных приборов и список технических устройств

Измерительные приборы прочно вошли в жизнь человека. За счет обширной классификации измерительных приборов можно определить именно тот аппарат, который понадобится для конкретных операций. Это могут быть как простейшие, по типу рулетки или амперметра, так и мультифункциональные измерительные приборы. При выборе устройства следует ориентироваться на его предназначение и основные характеристики.

Общие сведения

Измерительным прибором называют такое устройство, которое позволяет получить значение некоторой физической величины в заданном диапазоне. Последний задается с помощью приборной шкалы. А также технические приборы позволяют переводить величины в более понятную форму, которая доступна определенному оператору.

В настоящее время список измерительных приборов довольно широк, но большинство из них предназначается для контроля за проведением технологического процесса. Таким может быть датчик температуры или охлаждения в кондиционерах, нагревательных печах и других устройствах со сложной конструкцией.

Среди наименований измерительных инструментов есть как простые, так и сложные, в том числе и по конструкции. Причем сфера их применения может быть как узкоспециализированной, так и распространенной.

Чтобы узнать больше сведений о конкретном инструменте, необходимо рассмотреть определенную классификацию контрольно-измерительных устройств и приборов.

Виды измерительных приборов

В зависимости от того, какие бывают измерительные инструменты, их названия могут отличаться в разных классификациях.

Обычно приборы могут быть следующего вида:

  • Аналоговые измерительные инструменты и устройства, в которых сигнал на выходе является некоторой функцией измеряемой величины.
  • Цифровые устройства, где сигнал на выходе представлен в соответствующем виде.
  • Приборы, которые непосредственно регистрируют результаты измерений снимаемых показаний.
  • Суммирующие и интегрирующие. Первые выдают показания в виде суммы нескольких величин, а вторые позволяют проинтегрировать значение измеряемой величины при помощи другого параметра.

Вышеописанные приборы являются наиболее распространенными и применяются для измерения ряда физических величин. Сложность происходящих физических процессов требует применения нескольких приборов, причисляемых к разным классам.

Классификация устройств

В разных сферах применяется своя классификация устройств, предназначенных для измерения физических величин.

Приборы могут делиться по таким критериям:

  1. Способ преобразования: прямое действие, сравнение, смешанное преобразование.
  2. По способу выдачи информации делятся на показывающие и регистрирующие.
  3. Вид выходной информации может быть представлен как аналоговым, так и цифровым сигналом.

Регистрирующие устройства делятся на самопишущие и печатающие разновидности. Наиболее прогрессивным вариантом являются самопишущие аппараты, поскольку у них выше точность предоставления информации и шире возможности для измерения заданных ранее параметров.

Аналоговые и цифровые

Контрольно-цифровые инструменты могут быть как цифровыми, так и аналоговыми. Первые считаются более удобными. В них показатели силы, напряжения или тока переводятся в числа, затем выводятся на экран.

Но при этом внутри каждого такого прибора находится аналоговый преобразователь. Зачастую он представляет собой датчик, снимающий и отправляющий показания с целью преобразования их в цифровой код.

Хотя аналоговые инструменты менее точны, они обладают простотой и лучшей надежностью. А также существуют разновидности аналоговых инструментов и приборов, имеющих в своем составе усилители и преобразователи величин. По ряду причин они предпочтительнее механических устройств.

Для давления и тока

Каждому еще со школы или университета знакомы такие названия измерительных приборов, как барометры и амперметры. Первые предназначены для того, чтобы измерять атмосферное давление. Встречаются жидкостные и механические барометры.

Жидкостные разновидности считаются профессиональными из-за сложности конструкции и особенностей работы с ними. Метеостанции применяют барометры, заполненные внутри ртутью. Они наиболее точные и надежные, позволяют работать при перепадах температур и иных обстоятельствах. Механические конструкции проще, но постепенно их вытесняют цифровые аналоги.

Амперметры используются для измерения электрического тока в амперах. Шкала амперметра может градуироваться как в стандартных амперах, так и микро- , милли- и килоамперах. Лучше всего такие приборы подключать последовательно. В таком случае снижается сопротивление, а точность снимаемых показателей возрастает.

Слесарные инструменты

Достаточно часто можно встретить измерительные слесарные инструменты. Наиболее важная характеристика — точность измерений. За счет того, что слесарные инструменты механические, удается добиться точности до 0,005 или 0,1 мм.

Если погрешность измерений превысит допустимый порог, то произойдет нарушение технологии работы инструмента. Тогда потребуется переточка некачественной детали или замена целого узла в устройстве. Поэтому для слесаря важно при подгонке вала под втулку использовать не линейку, а инструменты с большей точностью измерений.

Наиболее популярным инструментом с высокой точностью измерений является штангенциркуль. Но и он не сможет дать гарантии точного результата с первого измерения. Опытные рабочие делают несколько измерений, которые затем преобразуют в некоторое среднее значение.

Встречаются операции, требующие максимальной точности. Таких много в микромашинах и отдельных деталях устройств крупного размера. Тогда следует воспользоваться микрометром. С его помощью можно измерять с точностью до сотых долей миллиметров. Распространенное заблуждение о том, что он позволяет измерять микроны, является не совсем верным. Да и при проведении стандартных домашних работ такая точность может не пригодиться, поскольку достаточно действующих значений точности и погрешности.

Специальные устройства

Существует такое известное устройство для измерения под названием угломер.

Его предназначение заключается в измерении углов деталей, а конструкция состоит из следующих элементов:

  • непосредственно устройство имеет полудиск с нанесенной измерительной шкалой;
  • линейка обладает собственным передвижным сектором, где нанесена шкала нониуса;
  • закрепление передвижного сектора линейки осуществляется стопорным винтом.

Процесс измерения таким прибором простой. Деталь прикладывается одной из граней к линейке. Сдвинуть ее надо таким образом, чтобы образовался равномерный и достаточный просвет между гранями и линейками. Затем сектор закрепляется винтом. Снимаются показатели сначала с линейки, а затем с нониуса.

Контрольно-измерительные устройства нашли довольно широкое применение в различных сферах производства, домашнего быта, слесарного дела и строительных работ. Они различаются как по сфере применения, так и по возможности измерения.

Все приборы могут подразделяться по способу преобразования, выдачи информации и виду выходной информации, предназначения и другим критериям. Имея хорошую классификацию, можно отыскать конкретный инструмент для определенных задач и операций.

Но главная цель у них состоит в измерении показаний, их записи и контроле технологических процессов производства. Рекомендуются использовать точные измерительные устройства, однако, устройство становится гораздо сложнее. Это потребует учета большого количества факторов и измерений параметров, чтобы вывести на экран точные показания.

Виды контрольно-измерительных приборов

Измерительные приборы – это специальные устройства, которые необходимы для сравнения измеряемой величины с единицей измерения. На сегодняшний день можно выделить следующие виды контрольно-измерительных приборов:

  1. Род измеряемой величины.
  2. Способ отсчета.
  3. Класс точности.
  4. Назначение.

Виды контрольно-измерительных приборов

В зависимости от того, какие величины будут измеряться в дальнейшем устройства можно разделить на следующие группы:

  1. Для измерения температуры.
  2. Для измерения давления.
  3. Для измерения количества расхода жидкостей.
  4. Для измерения уровня жидкости, а также сыпучих тел.
  5. Для качественных измерений.

Также виды контрольно-измерительных приборов могут различаться в зависимости по способу отсчета:

  1. С наводной ручкой.
  2. Самопишущие.
  3. Показывающие.
  4. Суммирующие.
  5. Сигнализирующие.

К приборам, которые имеют ручную наводку относятся такие, у которых при измерении сравнение измеряемой величины с образцами или мерами осуществляется при участии человека. Показывающие приборы в момент измерения указывается значение измеряемой величины. В большинстве случаев значение будет определяться визуально по шкалам.

Измерительные приборы также могут отличаться в зависимости от конструкции на щитовые и переносные. Стационарные устройства предназначаются для непрерывного контроля измеряемой величины. Благодаря переносным приборам у вас появится возможность проводить замеры периодически или эпизодически.

Самопишущие приборы

Самопишущие приборы позволяют автоматически записывать все результаты измерения на бумажной ленте. В большинстве случаев эта запись напоминает простую линию, которая изменяется.

Суммирующие приборы

Суммирующие приборы позволяют показать суммарное значение величины, которая измерялась. Счетчики позволяют показывать количество потребляемой энергии, воды или газа.

Важно знать! Сигнализирующие приборы при достижении определенного уровня величины будут просто подавать звуковой сигнал.

В зависимости от назначения производители изготовляют следующие приборы:

Общепромышленные измерительные приборы

Технические общепромышленные измерительные приборы являются устройствами, которые в дальнейшем будут использовать только на производстве. Их конструкция достаточно проста и в большинстве случаев подобные устройства будут иметь специальные шкалы с крупным циферблатом. Читайте также о том, как пользоваться мультиметром.

Лабораторные приборы

Контрольные и лабораторные устройства также могут применяться для быстрой проверки технических приборов и при проведении наладочных работ. Обычно благодаря подобным устройствам можно проверять технические и лабораторные приборы. Контрольные и лабораторные приборы изготовляют с более высоким классом точности.

Эталонные приборы

Эталонные и образцовые приборы могут использовать для проверки измерительных приборов. Основным их предназначением считается хранение и воспроизведение единиц, которые имеют наивысшую точность. Образцовые приборы во время измерения позволяют предоставить точные данные. Одной из важнейших характеристик подобных устройств считается чувствительность прибора.

Чувствительность прибора – это отношение величины линейного или углового перемещения стрелки, к изменению значению измеряемой величины.

Чувствительность в большинстве случаев выражается в числах деления прибора. Теперь вы знаете, какие существуют виды контрольно-измерительных приборов. Надеемся, что эта информация была полезной и интересной.

Значение и виды контрольно-измерительных приборов

Развитие человеческой цивилизации, желание и потребность человека преобразовывать окружающую среду заставляют его постоянно что-то сравнивать, измерять, взвешивать или отсчитывать. Для облегчения и выполнения регулярно возникающих однотипных задач начали разрабатывать контрольно-измерительные приборы, или КИП. Сначала эти приборы были простые, сделанные из подручных средств, но со временем они превратились в сложные конструкционные и электронные механизмы.

Определение понятия измерительных приборов

По мере изучения природных явлений человечество запустило различные технологические процессы, которые нуждаются в контроле и измерении. Для этого нужны специальные устройства, которые могут осуществлять постоянный контроль и управление при проведении различных технологических процессов.

Людям удалось научится управлять окружающей средой и искусственно созданными технологиями. Автоматизация промышленности вынудила разработать измерительные устройства, и цивилизация перешла на новый виток своего развития.

Измеритель — это устройство, основное предназначение которого сравнить измеряемую величину с общепринятой единицей измерения. Эти приборы измеряют физические величины, различные процессы, технические параметры. Встречаются механические и электрические. Принцип работы последних основывается на том, что фактически любой физический параметр можно преобразовать в электрический сигнал, который несложно обработать и проанализировать.

На основе полученных данных можно сделать выводы про состояние окружающей среды, о происходящих физических явлениях, параметрах и величинах, свойственных измеряемой области.

В настоящее время измерения производятся не только в научных лабораториях и на больших предприятиях, но также в мелких мастерских и обычном быту, даже если, на первый взгляд, эти устройства незаметны. Они широко применяются в бытовой технике и в привычных предметах домашнего обихода.

Невнимательное отношение к показаниям измерений, слабая подготовка специалистов ведёт к ошибкам на производстве, получению некачественной продукции и угрожает безопасности людей.

Классификация и виды КИП

Классификация измерителей не сложная, но очень обширная. Множество категорий подразделяется на несколько видов, которые тоже разветвляются на более мелкие типы. Основная масса данных приборов отличается по виду измеряемого параметра, по точности и предназначению.

В первую очередь КИП можно разбить на три глобальных категории:

  • Аналоговые приборы, которые способны непрерывно показывать изменение измеряемого параметра. Типичными представителем является бытовой ртутный термометр, который есть в каждом доме и манометр — устройство для показания величины давления. Манометр используется и в промышленности, и в быту.
  • Цифровые приборы. Они преобразуют полученные или измеренные данные в цифровой сигнал. Одним из таких устройств является электронный измеритель давления. На его цифровом экране показываются значения давления и пульса человека.
  • Простейшие механические измерители. Они знакомы каждому с детства. Это обычная линейка, транспортир, циркуль, бытовые механические весы. Мастера часто используют штангенциркуль.
Читайте также:  Как электрику организовать свой бизнес?

Каждую категорию можно раздробить по другим признакам:

  • По виду измеряемой величины.
  • По способу отсчёта.
  • По предлагаемому классу точности измерения.
  • По основному предназначению.

Измеряемые величины

Каждый прибор разработан под свои чётко определённые задачи и рассчитан на диапазон конкретных условий эксплуатации. По виду измеряемой величины измерительные приборы бывают:

  • Измеряющие температуру. Это всевозможные термометры и термопары.
  • Показатели давления или вакуума (разряжения).
  • Проверяющие уровень жидкости или сыпучих веществ.
  • Контролирующие количество и расход различных элементов. Это могут быть как и жидкости, так и пары, газы или твёрдые предметы.
  • Проводящие качественные замеры. Например, плотности, состава смеси или влажности.

Принципы действия у измерительных приборов практически одинаковы. Измеряемый элемент воздействует на первичный преобразователь, после чего сигнал переходит на измерительный элемент, который преобразует воздействие в движение отсчетного узла и показания переносятся на шкалу прибора.

Наглядно простейшее измерение демонстрируется работой манометра. Давление измеряемой среды воздействует на медную изогнутую трубку через специальный штуцер. Трубка пытается распрямиться на некоторую величину. Это действие передаётся на ось с указательной стрелкой. Сама ось подпружинена и стремиться вернуться к нулевой отметке, но под действием разгибающейся трубки, отклоняется и показывает текущее давление.

Способы отсчёта

Данные устройства обязательно имеют блок индикации результата. По способу отсчёта приборы делятся несколько типов:

  • Устройства с ручной наводкой.
  • Показывающие приборы.
  • Самописцы.
  • Суммирующие сигналы.
  • Сигнализирующие приборы.

Компарирущими или устройствами с ручной наводкой называются приборы, которые при измерении величин требуют помощи человека. Это могут быть гиревые весы или оптический пирометр.

Показывающие приборы имеют указатель в виде стрелки, которая перемещается по шкале значений. Иногда указатель может быть неподвижным, а циферблат перемещается или вращается вокруг стрелки. Такие приборы по конструкции бывают переносные или стационарные. Стационарные устройства, обычно, ведут непрерывное измерение динамических величин. Когда нужно производить замеры время от времени или эпизодически контролировать стационарные измерители, то используют переносные ИП.

Самопишущие устройства самостоятельно записывают результаты непрерывных измерений на носитель. Носителем может выступать диск, флеш-карта или «бесконечное» бумажное полотно. Запись представляет собой диаграмму, показывающую изменение в исследуемом объекте за определённое время. Такая запись может предотвратить аварию на производстве, указав на сбой в работе определённого узла.

Счётчики или суммирующие устройства отражают показатели счётного механизма и выводят на экран сумму измеряемой величины. Подобные интеграторы подсчитывают расход воды, газа, энергии.

Сигнализирующие приборы издают различные сигналы: световые или звуковые, как только измеряемая величина принимает заранее заданное значение. Они также извещают при возникновении определённого события. К таким приборам относят различные устройства сигнализации: охранные, пожарные и т. п.

Разделение по назначению

По назначению измерительные элементы бывают эксплуатационными (или техническими), лабораторными, образцовыми, контрольными и эталонными.

Эксплуатационные приборы широко применяют в промышленности, на производстве. Это рабочие экземпляры, контролирующие весь производственный цикл. Обычно просты в управлении, надёжны с интуитивно понятной шкалой и крупными цифровыми обозначениями.

Лабораторные и контрольные устройства предназначены для тестирования и проверок других приборов или при проведении отладочных работ на производстве. Отличаются повышенным классом точности. Лабораторными приборами пользуются, главным образом в лабораториях, а технические используют на местах других проверяемых устройств.

Основной задачей эталонных и образцовых устройств является хранение и воспроизведение эталонных данных, по которым сверяют показатели других измерительных устройств. Если эталонные приборы только хранят данные, то задача образцовых передать максимально точно данные с эталонных устройств к другим измерительным приборам.

Точность измерений

Каждый прибор обладает своей точностью замера величин или диапазоном погрешности. Ошибиться может любое устройство, даже эталонное. Точность может быть определена числом от нуля до единицы. Чем больше число точности устройства, тем хуже его показания.

Чувствительность измерительного устройства — это важный показатель, влияющий на правильную интерпретацию полученных данных. Чувствительность равна отношению значения перемещения указателя прибора (стрелки или пера) к величине изменения измеряемых данных, которые спровоцировали это перемещение.

Чувствительность, чаще всего, отражается в цене деления прибора. Например, если термометр имеет шкалу в 100 делений и рассчитан на максимальную измеряемую температуру в 50 градусов по Цельсию, то средняя чувствительность равна отношению 100 к 50. То есть, чувствительность прибора (цена одного деления) соответствует двум градусам по Цельсию.

Погрешности при работе

В любой работе возможны промахи и ошибки. Измерительные приборы не составляют исключение из правил. Когда проводятся разные измерения, то возникают различные погрешности. Это связано и с некоторыми условностями, принятыми при измерениях, и несовершенством методик исследований, и ошибками при использовании измерителя.

Обычно различают следующие виды погрешностей:

  • Абсолютная. Это величина равная разнице между показаниями эталонного прибора и используемого при одинаковых условиях замеров.
  • Относительная или косвенная. Величина отношения абсолютной погрешности к текущему измеренному значению.
  • Относительная приведённая. Отношение абсолютного значения и разницы между максимальным и минимальным пределами шкалы измерительного устройства.

Погрешности бывают также случайными, систематическими и промахами. Случайные ошибки не связаны ни с какой закономерностью, а зависят от случайных помех и разных внешних условий. Систематические соответствуют некоторым правилам и в их проявлении можно выявить закономерность. Часто зависят от технического состояния самого измерительного прибора. Промахи сильно выбиваются из закономерного и предполагаемого ряда вычислений. Они легко отслеживаются и вычёркиваются при анализе достаточного количества данных.

Обслуживание измерительных устройств

От качества работы КИП иногда зависит очень многое, поэтому эти устройства должны обладать такими характеристиками, как надёжностью, долговечностью, безотказностью и быть доступными в ремонте.

Для избежания ошибок при измерениях КИП нуждаются в своевременных профилактических работах и регулярных проверках на достоверность показателей. Мастер обязательно должен следить за состоянием и условиями хранения измерительных устройств, протирать сухой тряпкой циферблаты, шкалы и гнёзда сигнальных датчиков.

Перед началом работы надо убедиться в герметичности соединений и желательно сделать контрольное измерение. Неисправные приборы необходимо вовремя заменять новыми или своевременно ремонтировать.

На крупных предприятиях существуют целые бригады и отделы инженеров и слесарей КИП, которые следят за состоянием и исправностью приборов и автоматики.

На бытовом уровне приходится часто сталкиваться с различными измерительными устройствами. Они стали привычны и обыденны, но тоже требуют правильного обращения и соблюдения правил техники безопасности. Простейший датчик в стиральной машине при неисправности может принести множество неприятностей. Датчик температуры на бытовых утюгах расположен на нагреваемой поверхности и при обычном загрязнении выдаст недостоверные данные.

При правильном уходе и хранении контрольно-измерительных устройств любой быт, ремонт, отдых становится легче и приятнее.

Контрольно-измерительные приборы

Контрольно-измерительные приборы предназначены для контроля за работой и состоянием отдельных систем, агрегатов и автомобиля в целом. Такой контроль дает возможность своевременно принимать меры по поддержанию работоспособности автомобиля и его безаварийной эксплуатации.

Контрольно-измерительные приборы разделяются на указывающие и сигнализирующие.

Указывающие приборы имеют шкалу и стрелку. Чтобы оценить передаваемую информацию водитель должен посмотреть на шкалу и осознать показания.

Сигнализирующие приборы реагируют на одно значение измеряемо­го параметра и информируют об этом световым или звуковым сигналом.

Контрольно-измерительный прибор состоит из датчика и указате­ля, Датчик устанавливается в месте контроля, а указатель в месте наблюдения (в кабине). В сигнализирующих приборах указателем является сигнальная лампа.

По назначению все контрольно-измерительные приборы разделяются на группы: измерения температуры (термометры), измерения уровня топлива, контроля зарядного режима аккумуляторных батарей, измерения скорости автомобиля и пройденного пути (спидометры), измерения частоты вращения (тахометры).

Приборы для контроля температуры. Датчик такого прибора (см. рис. 80.) представляет собой латунный баллон, в наружной части которого имеется шестигранник под ключ и резьба для крепления. Внутри баллона размещены терморезистор 5 и пружина 3. Между стенкой баллона и пружиной находится изолирующая втулка 4. Терморезистор обладает свойством уменьшать сопротивление при увеличении температуры.

Рис. 80. Приборы для контроля температуры: а – датчик указателя температуры; б – поперечный разрез указателя; в – электрическая схема указателя; г – датчик сигнализатора аварийной температуры; 1 – винт; 2 – латунный баллон; 3- пружина

Основными частями указателя (рис. 80б) является каркас 6, три катушки 10, ось 9 с постоянным магнитом 11, экранирующий цилиндр 7. Каркас пластмассовый, состоит из двух частей, стянутых винтами. Одна катушка разметена под углом 90° к двум другим катушкам, имевшим обмотки встречного направления.

При включении датчика и указателя в сеть питания ток проходит по двум параллельным цепям (рис.80в): первая – катушки 17 и 16, термокомпенсационный резистор 18, вторая – катушка 15 и терморезистор 14 датчика. Магнитные потоки катушек 16 и 17 остаются постоянными, а магнитный поток катушки 15 зависит от сопротивления терморезистора 14. С увеличением температуры сопротивление этого резистора снижается, так в катушке 15 увеличивается, магнитное поле этой катушки также возрастает и суммарный поток всех трех катушек поворачивает магнит 11 со стрелкой, которая указывает соответствующую температуру. Термокомпенсационный и добавочные резисторы размещены в корпусе указателя.

Датчик сигнализатора (рис.80г) аварийной температуры имеет мас­сивный латунный корпус, на дне которого под шайбой 24 находится термобиметаллическая пластина 19 с контактом 22. В выводном зажиме 21 может перемешаться по резьбе тарельчатый контакт 22. При нагреве корпуса пластина 19 прогибается и контакты замыкаются.

Приборы контроля давления. По конструкции манометры могут быть непосредственного действия и электрические. Приборы непосредственного действия имеют совмещенный чувствительный элемент и указатель, а давление контролируемой среды подводится к чувствительному элементу по трубопроводу. Так устроены манометры для контроля давления воздуха.

Рис. 81 Приборы для контроля давления: а – манометр с трубчатой пружиной; б – датчик электрического манометра; в – электрическая схема указателя; г – датчик аварийного давления; 1 – циферблат; 2 -стрелка; 3 – крестовина; 4, 15, 30 – пружины; 5 – трубка; б – сектор; 7 – тяга; 8 – штуцер; 9, 11 – основание; 10 – мембрана; 12, 26 – реостат; 13 – ползунок; 14 -ось; 16 – качалка; 17 – регулировочный винт; 18, 31 – толкатели; 19 – штуцер; 20, 21, 22 – катушки; 23 – зажим питания; 24, 25 – резисторы; 27 – штекер; 28 – фильтр; 29 – изолятор; 32, 33 -контакты; 34 – диафрагма; 35 – корпус.

Основной деталью манометра непосредственного действия является трубчатая пружина 5 (рис.81 а), изогнутая в виде дуги и состоящая из одного неполного витка. К одному концу трубки через штуцер 8 подводится воздух (или жидкость), второй конец трубки соединен с тягой 7, которая через передаточные детали приводит в движение стрелку 2.

Под действием давления сжатого воздуха трубка разгибается, и ее свободный конец устанавливает стрелку в положение, соответствующее подведенному давлению.

В одном корпусе можно разместить два механизма и тогда получится один двух стрелочный манометр, контролирующий давление в разных местах системы.

Электрические манометры применяют для: контроля давления масла в смазочной системе двигателя. Датчик давления состоит из штуцера 19 (рис.816), основания 11, мембраны 10 с толкателем 18 и качалкой 16, реостата 12 с ползунком 13, возвратной пружины 13. Мембрана под давлением масла выгибается вверх и через качалку сдвигает ползун по реостату, уменьшая его сопротивление. При снижении давления мембрана под действием собственной упругости опускается, а возвратная пружина сдвигает ползун реостата в исходное положение.

Читайте также:  Какой чехол выбрать для Samsung Galaxy S10

Указатель давления имеет такую же конструкцию и принцип дейст­вия, как и указатель температуры. Датчик аварийного давления (рис.81 г) состоит из корпуса 35, диафрагмы 34 с толкателем 31 и пружиной 30, подвижного 32 и неподвижного 33 контактов. Сверху корпус закрыт изолятором 29 со штекером 27, под которым установлен специальный фильтр 28 уравновешивающий давление в полости под мембраной с атмосферным. Давление замыкания контактов обеспечивается тарировкой пружины.

Приборы контроля уровня топлива. Датчик указателя уровня топлива представляет собой проволочный реостат, ползун которого перемещается через рычаг поплавком топливного бака. Датчики устанавливаются в каждом баке, их сигнал передается на общий указатель через переключатель.

Датчик может иметь специальный контакт, который замыкается при снижении уровня топлива до минимального размера (на 50. 100 км пути).

Указатель уровня топлива аналогичен по конструкции указателя температуры и давления, отличается от них обмоточными данными, схемой соединения катушек, и резисторов. Шкалу указателя градуируют в долях объема бака, поэтому на ней имеются отметки 0,-1/4, 1/2, 3/4, П (полный).

Контроль зарядного режима аккумуляторных батарей производится с помощью амперметра, устанавливаемого последовательно в зарядную цепь. На шкале амперметра нуль отсчета показаний находится посредине, а знаки «+» с одной стороны и «-» с другой стороны. Отклонение стрелки в сторону знака. “+” указывает на заряд аккумуляторов батарей, а в сторону «-» – ее разряд.

По амперметру можно судить также о исправности генератора и степени заряженности аккумуляторных батарей.

Приборы для измерения скорости движения автомобиля и частоты вращения коленчатого вала двигателя. Такими приборами являются спи­дометр и тахометр. Спидометр состоит из скоростного узла, показывающего скорость в данный момент, и счетного узла, отсчитывающего пройденный путь. Оба узла имеют общее основание и работают от одного общего валика.

По приводу спидометра разделяются на приборы с приводом от гиб­кого вала И с электроприводом. Гибкие валы применяют, если его длина не превышает 3,5 м. При большей длине, а также на автомобилях с откидывающейся кабиной применяют спидометры с электроприводом.

Рис. 82 Схема спидометра с гибким приводом: 1 – валик; 2 – фитиль; 3 – заглушка; 4 – магнит; 5 – диск; 6 – картушка; 7 – магнит; 8 – пружина; 9 – стрелка; 10 – рычаг; 11,12 – привод счетного узла

Основными частями спидометра с гибким приводом (рис.82) являют­ся валик 1 с магнитом 4, картушка 6, спиральная пружина 8, экран 7, валы 11, 12. привода счетного узла. Картушка выполнена из алюминия, установлена на своей оси и охватывает магнит. Экран защищает магнит и картушку от влияния посторонних магнитных полей и концентрирует магнитное поле прибора в рабочем направлении.

При вращении валика поле магнита наводит в картушке вихревые токи, создающие свое магнитное поле. Взаимодействие полей магнита и картушки создает крутящий момент, стремящийся повернуть картушку в направлении вращения магнита.

При повороте картушка перемещает стрелку и растягивает пружину 8. Взаимодействие момента, поворачивающего картушку, и усилие пружины устанавливают стрелку в положение, пропорциональное частоте вращения валика 4 и, следовательно, скорости движения автомобиля.

Вращение к спидометру передается от раздаточной коробки гибким валом. Гибкий вал состоит из троса с наконечниками и гибкой оболочки с ниппелями и гайками. Трос состоит из нескольких винтовых многозаходных пружин, навитых одна на другую в несколько слоев, и внутреннего сердечника из проволоки. В оболочку троса закладывается смазка.

Спидометр с электроприводом состоит из датчика и приемника с указателем, соединенных экранированным проводом.

Рис. 83 Электрический спидометр СП – 170: а – датчик; б – приемник с указателем; в – электрическая схема; 1 -втулка крепления провода; 2,4 -обмотки; 3 -вал ротора; 5, 8 – постоянные магниты; 6 -электродвигатель; 7 -болт крепления; 9 – кожух; 10 – корпус; 11 – печатная плата; 12 – провод; 13 -зажим; 1 – датчик; П – указатель.

Датчик (рис.83) представляет собой электрический трехфазный генератор с ротором в виде постоянного магнита; датчик установлен на раздаточной коробке.

Приемник и указатель объединены в один механизм. Скоростной и счетные узлы спидометра приводятся в действие трехфазным синхронным электродвигателем 6, который имеет три полюса с обмотками 4 и якорь в виде постоянного магнита.

На оси якоря установлен магнит 8 скоростного узла спидометра. При движении автомобиля якорь датчика вращается и создает в каж­дой катушке импульсы напряжения, которые по отдельному проводу пода­ются на базу одного из трех транзисторов электродвигателя. При открытии транзисторов от сети автомобиля в обмотки электродвигателя подается ток, что привозит к вращению якоря и магнита скоростного узла.

Тахометр имеет такую же конструкцию и принцип действия, как и спидометр, исключая счетный узел и градуировку шкалы.

Техническое обслуживание контрольно-измерительных приборов сводится к содержанию их в чистоте Проверке креплений и надежности контактных соединений.

Характерными неисправностями контрольно-измерительных приборов могут быть отказ в работе или неправильные показания.

Причиной отказа прибора является обрыв в цепи от включателя при­боров и стартера до указателя. Неправильные показания прибора могут быть вызваны обрывом в одной из катушек указателя или в цепи датчика, а также из-за плохих контактов в соединениях. Обрыв в цепи можно проверить контрольной лампой. Неисправные указатели и датчики подлежат замене.

Контрольно-измерительные инструменты. Выбор средств измерений

1. Выбор средств измерений и их применение

Выбор средств измерений при проверке точности деталей – один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

  • допустимую погрешность измерительного прибора–инструмента;
  • цену деления шкалы;
  • порог чувствительности;
  • пределы измерения, массу, габаритные размеры, рабочую нагрузку и др.

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее – до 20% допуска на изготовление изделия.

2. Контрольно-измерительные инструменты

К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка – штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.

Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.

Рис. 2. Методы измерения размеров штангенциркулем

Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).

Рис. 3. Установка нониуса: А – на размер 0,6 мм; Б – на размер 7 мм; В – на размер 7,4 мм

Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).

Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги – основной шкалы (например 7,4 мм на рис. 3, В).

Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.

Штангенрейсмасы предназначаются для точной разметки и измерения высот от плоских поверхностей.

Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.

Рис 4. Штангенрейсмас

Шкала и нониус такие же, как и у других штангенинструментов.

Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.

После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.

При разметке размер устанавливается по шкалам нониуса и штанги заранее. Риска на детали прочерчивается острым концом ножки при перемещении штангенрейсмаса по плите. При измерении с помощью игл (рис. 4, в) необходимо от показания штангенрейсмаса М вычесть величину m, которая соответствует такому положению рамки 2, когда острие иглы находится в одной плоскости с плоскостью основания .

Индикаторы часового типа. Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.

Читайте также:  Как выбрать дисковую пилу

При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.

Практика измерений. Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.

Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б – на универсальном штативе; в – различные способы крепления индикаторной головки на штативе

При измерениях применяют универсальный штатив и другие приспособления.

Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.

При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.

При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.

Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).

Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах

Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.

Рис. 7. Микрометр для наружных измерений: 1 – пятка; 2 – микрометрический винт; 3 – стопорная гайка; 4 – втулка; 5 – барабан; 6 – трещотка; 7 – скоба

Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.

На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.

При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров – по верхней шкале втулки, а сотые доли миллиметра – по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.

Примеры отсчета по шкалам микрометра приведены на рис. 8.

Рис. 8. Методика отсчета размеров по шкале микрометрического инструмента: а – 11,0 мм; б – 9,36 мм; в – 10,5 мм; г – 9,86 мм

Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.

Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.

Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.

При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.

При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.

Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.

Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).

Рис. 9. Набор щупов

Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.

Поверочные плиты (рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.

На поверхности плит не должно быть коррозийных пятен или раковин.

Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)

Рис. 10. Поверочные плиты

Поверочные линейки стальные. Отклонения от плоскостности и прямолинейности (отклонения формы плоских поверхностей) контролируют с помощью поверочных линеек (рис. 11). Поверочные линейки выпускают лекальные с двусторонним скосом (рис. 11, а); трехгранные (рис. 11, б) и четырехгранные (рис. 11, в); с широкой рабочей поверхностью (прямоугольного сечения (рис. 11, г) и двутаврового сечения (рис. 11, д), “чугунные мостики” (рис. 11, е).

Рис. 11. Поверочные линейки

Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.

Поверочные линейки изготовляют длиной: лекальные – до 500 мм, “чугунные мостики” – до 2500 мм и более. Лекальные применяют для контроля прямолинейности поверхности детали “на просвет”, а поверочные линейки “чугунные мостики” – применяют для проверки прямолинейности “на краску”, с помощью щупа или папиросной бумажки.

При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.

Рис. 12. Схема контроля отклонения от плоскостности лекальной линейкой “на просвет”: а – визуально; б – с образцом просветов

Измерение отклонений от прямолинейности лекальными линейками “на просвет” требует навыка от исполнителя. Для выработки навыка оценивать на глаз по величине просвета величину отклонения от прямолинейности применяют образец просветов (рис. 12, б), который состоит из лекальной линейки 1, комплекта из четырех концевых мер длины с градацией 1 мкм, двух одинаковых концевых мер длины (2) и стеклянной пластины 3. При измерении между концевыми мерами длины и ребром линейки образуются “просветы”, окрашенные в разные цвета вследствие дифракции видимого света и от величины зазора между линейкой и концевой мерой длины.

Контрольно-измерительные приборы

Контрольно-измерительный прибор — средстство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто контрольно-измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператора.

Назначение контрольно-измерительных приборов (КИП) состоит в том, чтобы целенаправленным образом преобразовать исследуемые величины в форму, которая окажется наиболее удобной при конкретном использовании (или непосредственном восприятии) машиной или человеком.
К примеру, говоря о назначении контрольно-измерительных приборов, связанных с электроизмерениями (амперметры, гальванометры, вольтметры и проч.), надо понимать, что изучаемые электрические величины (количественно оценить изменения которых органы человеческих чувств непосредственно не способны) с их помощью преобразуются в определенные механические перемещения соответствующих указателей, в качестве которых выступают стрелка или световой луч. Аналогично и для преобразуемых в механические перемещения физических величин (в частности, пружинные манометры, волосяные гигрометры, ртутные термометры и проч.).
Соответствующее назначение контрольно-измерительных приборов должно подкрепляться уверенностью в получаемых данных, в процедурах исследований и контроля, для чего необходимо подтверждение пригодности аппаратуры для использования с точностью и по принятым эталонам.

Все контрольно-измерительные приборы можно классифицировать на различные группы по следующим признакам:

род измеряемой величины;
– способ отсчета;
– вид шкалы;
– метрологическое назначение.

Выделяют следующие группы контрольно-измерительных приборов в соответствии с родом измеряемой величины:
приборы для измерения линейно-угловых величин (линейки, рулетки, курвиметры, угломеры, уровни, микрометры, штангенциркули);
весоизмерительная техника:
1) меры массы (гири);
2) весоизмерительные приборы (весы);
приборы для измерения температуры:
1) контактный метод (термометры);
2) бесконтактный метод (тепловизоры, пирометры);
приборы для измерения давления, а также расхода вещества (деформационные манометры, дифференциальные манометры, преобразователи давления, расходомеры);
приборы химического анализа (газоанализаторы, ph-метры, алкометры);
электроизмерительные приборы (амперметры, вольтмаетры, омметры);
геодезические приборы (нивелиры оптические, построители лазерных плоскостей, нивелиры ротационные, теодолиты оптические, теодолиты электронные);
приборы для измерения физико-химических величин (анемометры, влагомеры, гигрометры, ареометры);
– прочее.

По способу отсчета все контрольно-измерительные приборы можно подразделить на следующие группы:
компарирующие приборы – при измерении этими приборами необходимо участие человека, в них происходит сравнивание измеряемой величины с мерой, эталонной величиной (пример: рычажные весы);
показывающие приборы – величина измеряемого параметра уазывается отсчетным устройством (пример: дальномер);
регистрирующие приборы – значение измеряемой величины в них непрерывно или в отдельные промежутки времени записывается (пример: логгер);
суммирующие приборыили интеграторы – в них происходитнепрерывное суммирование мгновенных значений измеряемого параметра (пример: счетчик электроинергии);
комбинированные приборы – они могут одновременно показывать и записывать величину измеряемого параметра (пример: секундомер).

По виду шкалы все контрольно-измерительные приборы можно подразделить на следующие группы:
цифровые;
аналоговые:
1) с линейной шкалой;
2) с дуговой шкалой;
3) с профильной шкалой;
4) с барабанной шкалой;
Такие шкалы могут быть подвижные и неподвижные, равномерные и неравномерные.

По метрологическому назначению различают эталонные и рабочие контрольно-измерительные приборы.Рабочий прибор – средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений.
Эталонные приборы предназначены для передачи размера единицы другим измерительным приборам, что составляет главную задачу поверки. Поэтому эталонные приборы называют также средствами поверки. Средства поверки – эталоны, поверочные установки и другие средства измерений, применяемые при поверке в соответствии с установленными правилами.

Ссылка на основную публикацию

Виды контрольно-измерительных приборов

Контрольно-измерительные инструменты и приборы: виды и принцип действия

Любое производство подразумевает использование контрольно-измерительных приборов. Они необходимы и в быту: согласитесь, сложно обойтись во время ремонта без самых простых измерительных приборов, таких как линейка, рулетка, штангенциркуль и т. п. Давайте поговорим о том, какие существуют измерительные инструменты и приборы, в чем их принципиальные отличия и где применяются те или иные виды.

Общие сведения и термины

Измерительный прибор – устройство, с помощью которого получают значение физической величины в заданном диапазоне, определяемом шкалой прибора. Кроме того, такой инструмент позволяет переводить величины, делая их более понятными оператору.

Контрольный прибор используется для контроля проведения технологического процесса. К примеру, это может быть какой-либо датчик, установленный в нагревательной печи, кондиционере, отопительном оборудовании и так далее. Такой инструмент нередко определяет качество продукции и свойства. В настоящее время выпускают самые различные измерительные инструменты и приборы, среди которых есть как простые, так и сложные. Некоторые нашли свое применение в одной отрасли промышленности, другие же используются повсеместно. Чтобы более подробно разобраться с этим вопросом, необходимо классифицировать данный инструмент.

Поплавковые дифференциальные манометры.

Широкое распространение в газовом хозяйстве нашли поплавковые дифманометры (рисунок ниже) и сужающие устройства. Сужающие устройства (диафрагмы) служат для создания перепада давления. Они работают в комплекте с дифманометрами, измеряющими создаваемый перепад давления. При установившемся расходе газа полная энергия потока газа складывается из потенциальной энергии (статического давления) и кинетической энергии, то есть энергии скорости.

До диафрагмы поток газа имеет начальную скорость ν1 в узком сечении эта скорость возрастает до ν2, после прохождения диафрагмы лоток расширяется и постепенно восстанавливает прежнюю скорость.

При возрастании скорости потока увеличивается его кинетическая энергия и соответственно уменьшается потенциальная энергия, то есть статическое давление.

За счет разности давлений Δp = pст1 — pст2 ртуть, находящаяся в дифманометре, перемещается из поплавковой камеры в стакан. Вследствие этого расположенный в поплавковой камере поплавок опускается и перемещает ось, с которой связаны стрелки прибора, показывающего расход газа. Таким образом, перепад давления в дроссельном устройстве, измеренный с помощью дифференциального манометра, может служить мерой расхода газа.

Аналоговые и цифровые

Контрольно-измерительные приборы и инструменты разделяются на аналоговые и цифровые. Второй вид более популярен, так как различные величины, к примеру, сила тока или напряжение, переводятся в числа и выводятся на экран. Это очень удобно и только так можно добиться высокой точности снятия показаний. Однако необходимо понимать, что в любой контрольно-измерительный цифровой прибор входит аналоговый преобразователь. Последний представляет собой датчик, который снимает показания и отправляет данные для преобразования в цифровой код.


Аналоговые измерительные и контрольные инструменты более просты и надежны, но в это же время менее точны. Причем они бывают механическими и электронными. Последние отличаются тем, что имеют в своем составе усилители и преобразователи величин. Они более предпочтительны по целому ряду причин.

Классификация по разным признакам

Измерительные инструменты и приборы принято разделять на группы в зависимости от способа предоставления информации. Так, бывают регистрирующие и показывающие инструменты. Первые характерны тем, что способны записывать показания в память. Нередко используются самопишущие приборы, которые самостоятельно распечатывают данные. Вторая группа предназначена исключительно для контроля в реальном времени, то есть во время снятия показаний оператор должен находиться около прибора. Также контрольно-измерительный инструмент классифицируют по методу измерений:

  • прямого действия – осуществляется преобразование одной или нескольких величин без сравнения с одноименной величиной;
  • сравнительные – измерительный инструмент, предназначенный для сравнения измеряемой величины с уже известной.


Какие бывают приборы по форме представления показаний (аналоговые и цифровые), мы уже разобрались. Также классифицируют измерительные инструменты и приборы по другим параметрам. К примеру, бывают суммирующие и интегрирующие, стационарные и щитовые, нормируемые и ненормируемые приборы.

Измерительные слесарные инструменты

С такими приборами мы встречаемся наиболее часто. Тут важна точность работ, а так как используется механический инструмент (по большей части), то удается добиться погрешности от 0,1 до 0,005 мм. Любая недопустимая погрешность приводит к тому, что потребуется переточка или вовсе замена детали или целого узла. Именно поэтому при подгонке вала под втулку слесарь использует не линейки, а более точные инструменты.


Самое популярное слесарное измерительное оборудование – штангенциркуль. Но и такой относительно точный прибор не гарантирует 100%-ный результат. Именно поэтому опытные слесари всегда делают большое количество измерений, после чего выбирается среднее значение. Если требуется получить более точные показания, то используют микрометр. Он позволяет проводить измерения до сотых долей миллиметров. Однако многие думают, что данный инструмент способен измерять до микронов, что не совсем так. Да и вряд ли при проведении простых слесарных работ в домашних условиях потребуется такая точность.

Погрешности при работе

В любой работе возможны промахи и ошибки. Измерительные приборы не составляют исключение из правил. Когда проводятся разные измерения, то возникают различные погрешности. Это связано и с некоторыми условностями, принятыми при измерениях, и несовершенством методик исследований, и ошибками при использовании измерителя.

Обычно различают следующие виды погрешностей:

  • Абсолютная. Это величина равная разнице между показаниями эталонного прибора и используемого при одинаковых условиях замеров.
  • Относительная или косвенная. Величина отношения абсолютной погрешности к текущему измеренному значению.
  • Относительная приведённая. Отношение абсолютного значения и разницы между максимальным и минимальным пределами шкалы измерительного устройства.

Погрешности бывают также случайными, систематическими и промахами. Случайные ошибки не связаны ни с какой закономерностью, а зависят от случайных помех и разных внешних условий. Систематические соответствуют некоторым правилам и в их проявлении можно выявить закономерность. Часто зависят от технического состояния самого измерительного прибора. Промахи сильно выбиваются из закономерного и предполагаемого ряда вычислений. Они легко отслеживаются и вычёркиваются при анализе достаточного количества данных.

Про угломеры и щупы

Нельзя не рассказать о таком популярном и эффективном инструменте, как угломер. Из названия можно понять, что он используется, если требуется точно измерить углы деталей. Состоит прибор из полудиска с намеченной шкалой. На нем имеется линейка с передвижным сектором, на который нанесена шкала нониуса. Для закрепления передвижного сектора линейки на полудиске используется стопорный винт. Сам по себе процесс измерения довольно прост. Для начала необходимо приложить измеряемую деталь одной гранью к линейке. При этом линейка сдвигается так, чтобы между гранями детали и линейками образовался равномерный просвет. После этого сектор закрепляется стопорным винтом. Первым делом снимаются показания с основной линейки, а затем с нониуса.


Нередко для измерения зазора используется щуп. Он представляет собой элементарный набор пластин, закрепленных в одной точке. Каждая пластина имеет свою толщину, которую мы знаем. Устанавливая большее или меньшее количество пластин, можно довольно точно измерить зазор. В принципе, все эти измерительные инструменты ручные, но они довольно эффективны и вряд ли предоставляется возможным их заменить. А сейчас пойдем дальше.

Схема ротационного счетчика типа РГ

1 — корпус счетчика; 2 — роторы; 3 — дифференциальный манометр; 4 — указатель счетного механизма

При вращении роторов между одним из них и стенкой камеры образуется замкнутое пространство, которое заполнено газом. Вращаясь, ротор выталкивает газ в газопровод. Каждый поворот ротора передается через коробку зубчатых колес и редуктор счетному механизму. Таким образом учитывается количество газа, проходящего через счетчик.

Ротор подготавливают к работе следующим образом:

  • снимают верхний и нижний фланцы, затем роторы промывают мягкой кистью, смоченной в бензине, поворачивая их деревянной палочкой, чтобы не повредить шлифованную поверхность;
  • затем промывают обе коробки зубчатых колес и редуктор. Для этого заливают бензин (через верхнюю пробку), проворачивают роторы несколько раз и сливают бензин через нижнюю пробку;
  • закончив промывку, заливают масло в коробки зубчатых колес, редуктор и счетный механизм, заливают соответствующую жидкость в манометр счетчика, соединяют фланцы и проверяют счетчик путем пропускания через него газа, после чего замеряют перепад давления;
  • далее прослушивают работу роторов (должны вращаться бесшумно) и проверяют работу счетного механизма.

При техническом осмотре следят за уровнем масла в коробках зубчатых колес, редукторе и счетном механизме, замеряют перепад давления, проверяют на плотность соединения счетчиков. Счетчики устанавливают на вертикальных участках газопроводов так, чтобы поток газа направлялся через них сверху вниз.

Немного истории

Следует отметить, рассматривая измерительные инструменты: виды их очень разнообразны. Основные приборы мы с вами уже изучили, а сейчас бы хотелось поговорить о немного и о других инструментах. К примеру, ацетометр используется для измерения крепости уксусной кислоты. Данный прибор способен определять количество свободных уксусных кислот в растворе, а был изобретен Отто и использовался на протяжении 19 и 20 веков. Сам по себе ацетометр похож на градусник и состоит из стеклянной трубки 30х15см. Также имеется специальная шкала, которая и позволяет определять необходимый параметр. Тем не менее сегодня есть более продвинутые и точные методы определения химического состава жидкости.

Барометры и амперметры

А вот с данными инструментами знаком практически каждый из нас еще со школы, техникума или университета. К примеру, барометр используется для измерения атмосферного давления. Сегодня применяются жидкостные и механические барометры. Первые можно назвать профессиональными, так как их конструкция несколько сложней, а показания точней. На метеостанциях используют ртутные барометры, так как они наиболее точные и надежные. Механические варианты хороши своей простотой и надежностью, но они постепенно заменяются цифровыми приборами.

Такие инструменты и приборы для измерений, как амперметры, тоже знакомы каждому. Они нужны для измерения силы тока в амперах. Шкала современных приборов градируется по-разному: микроамперами, килоамперами, миллиамперами и т. п. Амперметры всегда стараются подключать последовательно: это необходимо для понижения сопротивления, что позволит увеличить точность снимаемых показаний.

КИП – это человеческое все!

Очень сложно охватить все многообразие видов деятельности человека, в которых применяются приборы для контроля и измерений.

Но факт остается фактом: не будет их – жизнь человека осложнится настолько, что придется возвращаться в пещеры. А этого вряд ли кому-то захочется. И поэтому все большую популярность приобретает стремление молодежи познакомиться с этим огромным и интересным миром под названием КИП, дающим возможность в полной мере реализовать своё желание овладеть новыми знаниями.

Любое производство подразумевает использование контрольно-измерительных приборов.Они необходимы и в быту: согласитесь, сложно обойтись во время ремонта без самых простых измерительных приборов, таких как линейка, рулетка, штангенциркуль и т. п. Давайте поговорим о том, какие существуют измерительные инструменты и приборы, в чем их принципиальные отличия и где применяются те или иные виды.

Значение и виды контрольно-измерительных приборов

Развитие человеческой цивилизации, желание и потребность человека преобразовывать окружающую среду заставляют его постоянно что-то сравнивать, измерять, взвешивать или отсчитывать. Для облегчения и выполнения регулярно возникающих однотипных задач начали разрабатывать контрольно-измерительные приборы, или КИП. Сначала эти приборы были простые, сделанные из подручных средств, но со временем они превратились в сложные конструкционные и электронные механизмы.

Определение понятия измерительных приборов

По мере изучения природных явлений человечество запустило различные технологические процессы, которые нуждаются в контроле и измерении. Для этого нужны специальные устройства, которые могут осуществлять постоянный контроль и управление при проведении различных технологических процессов.

Людям удалось научится управлять окружающей средой и искусственно созданными технологиями. Автоматизация промышленности вынудила разработать измерительные устройства, и цивилизация перешла на новый виток своего развития.

Измеритель — это устройство, основное предназначение которого сравнить измеряемую величину с общепринятой единицей измерения. Эти приборы измеряют физические величины, различные процессы, технические параметры. Встречаются механические и электрические. Принцип работы последних основывается на том, что фактически любой физический параметр можно преобразовать в электрический сигнал, который несложно обработать и проанализировать.

На основе полученных данных можно сделать выводы про состояние окружающей среды, о происходящих физических явлениях, параметрах и величинах, свойственных измеряемой области.

В настоящее время измерения производятся не только в научных лабораториях и на больших предприятиях, но также в мелких мастерских и обычном быту, даже если, на первый взгляд, эти устройства незаметны. Они широко применяются в бытовой технике и в привычных предметах домашнего обихода.

Невнимательное отношение к показаниям измерений, слабая подготовка специалистов ведёт к ошибкам на производстве, получению некачественной продукции и угрожает безопасности людей.

Классификация и виды КИП

Классификация измерителей не сложная, но очень обширная. Множество категорий подразделяется на несколько видов, которые тоже разветвляются на более мелкие типы. Основная масса данных приборов отличается по виду измеряемого параметра, по точности и предназначению.

В первую очередь КИП можно разбить на три глобальных категории:

  • Аналоговые приборы, которые способны непрерывно показывать изменение измеряемого параметра. Типичными представителем является бытовой ртутный термометр, который есть в каждом доме и манометр — устройство для показания величины давления. Манометр используется и в промышленности, и в быту.
  • Цифровые приборы. Они преобразуют полученные или измеренные данные в цифровой сигнал. Одним из таких устройств является электронный измеритель давления. На его цифровом экране показываются значения давления и пульса человека.
  • Простейшие механические измерители. Они знакомы каждому с детства. Это обычная линейка, транспортир, циркуль, бытовые механические весы. Мастера часто используют штангенциркуль.
Читайте также:  Как снимать детские праздники

Каждую категорию можно раздробить по другим признакам:

  • По виду измеряемой величины.
  • По способу отсчёта.
  • По предлагаемому классу точности измерения.
  • По основному предназначению.

Измеряемые величины

Каждый прибор разработан под свои чётко определённые задачи и рассчитан на диапазон конкретных условий эксплуатации. По виду измеряемой величины измерительные приборы бывают:

  • Измеряющие температуру. Это всевозможные термометры и термопары.
  • Показатели давления или вакуума (разряжения).
  • Проверяющие уровень жидкости или сыпучих веществ.
  • Контролирующие количество и расход различных элементов. Это могут быть как и жидкости, так и пары, газы или твёрдые предметы.
  • Проводящие качественные замеры. Например, плотности, состава смеси или влажности.

Принципы действия у измерительных приборов практически одинаковы. Измеряемый элемент воздействует на первичный преобразователь, после чего сигнал переходит на измерительный элемент, который преобразует воздействие в движение отсчетного узла и показания переносятся на шкалу прибора.

Наглядно простейшее измерение демонстрируется работой манометра. Давление измеряемой среды воздействует на медную изогнутую трубку через специальный штуцер. Трубка пытается распрямиться на некоторую величину. Это действие передаётся на ось с указательной стрелкой. Сама ось подпружинена и стремиться вернуться к нулевой отметке, но под действием разгибающейся трубки, отклоняется и показывает текущее давление.

Способы отсчёта

Данные устройства обязательно имеют блок индикации результата. По способу отсчёта приборы делятся несколько типов:

  • Устройства с ручной наводкой.
  • Показывающие приборы.
  • Самописцы.
  • Суммирующие сигналы.
  • Сигнализирующие приборы.

Компарирущими или устройствами с ручной наводкой называются приборы, которые при измерении величин требуют помощи человека. Это могут быть гиревые весы или оптический пирометр.

Показывающие приборы имеют указатель в виде стрелки, которая перемещается по шкале значений. Иногда указатель может быть неподвижным, а циферблат перемещается или вращается вокруг стрелки. Такие приборы по конструкции бывают переносные или стационарные. Стационарные устройства, обычно, ведут непрерывное измерение динамических величин. Когда нужно производить замеры время от времени или эпизодически контролировать стационарные измерители, то используют переносные ИП.

Самопишущие устройства самостоятельно записывают результаты непрерывных измерений на носитель. Носителем может выступать диск, флеш-карта или «бесконечное» бумажное полотно. Запись представляет собой диаграмму, показывающую изменение в исследуемом объекте за определённое время. Такая запись может предотвратить аварию на производстве, указав на сбой в работе определённого узла.

Счётчики или суммирующие устройства отражают показатели счётного механизма и выводят на экран сумму измеряемой величины. Подобные интеграторы подсчитывают расход воды, газа, энергии.

Сигнализирующие приборы издают различные сигналы: световые или звуковые, как только измеряемая величина принимает заранее заданное значение. Они также извещают при возникновении определённого события. К таким приборам относят различные устройства сигнализации: охранные, пожарные и т. п.

Разделение по назначению

По назначению измерительные элементы бывают эксплуатационными (или техническими), лабораторными, образцовыми, контрольными и эталонными.

Эксплуатационные приборы широко применяют в промышленности, на производстве. Это рабочие экземпляры, контролирующие весь производственный цикл. Обычно просты в управлении, надёжны с интуитивно понятной шкалой и крупными цифровыми обозначениями.

Лабораторные и контрольные устройства предназначены для тестирования и проверок других приборов или при проведении отладочных работ на производстве. Отличаются повышенным классом точности. Лабораторными приборами пользуются, главным образом в лабораториях, а технические используют на местах других проверяемых устройств.

Основной задачей эталонных и образцовых устройств является хранение и воспроизведение эталонных данных, по которым сверяют показатели других измерительных устройств. Если эталонные приборы только хранят данные, то задача образцовых передать максимально точно данные с эталонных устройств к другим измерительным приборам.

Точность измерений

Каждый прибор обладает своей точностью замера величин или диапазоном погрешности. Ошибиться может любое устройство, даже эталонное. Точность может быть определена числом от нуля до единицы. Чем больше число точности устройства, тем хуже его показания.

Чувствительность измерительного устройства — это важный показатель, влияющий на правильную интерпретацию полученных данных. Чувствительность равна отношению значения перемещения указателя прибора (стрелки или пера) к величине изменения измеряемых данных, которые спровоцировали это перемещение.

Чувствительность, чаще всего, отражается в цене деления прибора. Например, если термометр имеет шкалу в 100 делений и рассчитан на максимальную измеряемую температуру в 50 градусов по Цельсию, то средняя чувствительность равна отношению 100 к 50. То есть, чувствительность прибора (цена одного деления) соответствует двум градусам по Цельсию.

Погрешности при работе

В любой работе возможны промахи и ошибки. Измерительные приборы не составляют исключение из правил. Когда проводятся разные измерения, то возникают различные погрешности. Это связано и с некоторыми условностями, принятыми при измерениях, и несовершенством методик исследований, и ошибками при использовании измерителя.

Обычно различают следующие виды погрешностей:

  • Абсолютная. Это величина равная разнице между показаниями эталонного прибора и используемого при одинаковых условиях замеров.
  • Относительная или косвенная. Величина отношения абсолютной погрешности к текущему измеренному значению.
  • Относительная приведённая. Отношение абсолютного значения и разницы между максимальным и минимальным пределами шкалы измерительного устройства.

Погрешности бывают также случайными, систематическими и промахами. Случайные ошибки не связаны ни с какой закономерностью, а зависят от случайных помех и разных внешних условий. Систематические соответствуют некоторым правилам и в их проявлении можно выявить закономерность. Часто зависят от технического состояния самого измерительного прибора. Промахи сильно выбиваются из закономерного и предполагаемого ряда вычислений. Они легко отслеживаются и вычёркиваются при анализе достаточного количества данных.

Обслуживание измерительных устройств

От качества работы КИП иногда зависит очень многое, поэтому эти устройства должны обладать такими характеристиками, как надёжностью, долговечностью, безотказностью и быть доступными в ремонте.

Для избежания ошибок при измерениях КИП нуждаются в своевременных профилактических работах и регулярных проверках на достоверность показателей. Мастер обязательно должен следить за состоянием и условиями хранения измерительных устройств, протирать сухой тряпкой циферблаты, шкалы и гнёзда сигнальных датчиков.

Перед началом работы надо убедиться в герметичности соединений и желательно сделать контрольное измерение. Неисправные приборы необходимо вовремя заменять новыми или своевременно ремонтировать.

На крупных предприятиях существуют целые бригады и отделы инженеров и слесарей КИП, которые следят за состоянием и исправностью приборов и автоматики.

На бытовом уровне приходится часто сталкиваться с различными измерительными устройствами. Они стали привычны и обыденны, но тоже требуют правильного обращения и соблюдения правил техники безопасности. Простейший датчик в стиральной машине при неисправности может принести множество неприятностей. Датчик температуры на бытовых утюгах расположен на нагреваемой поверхности и при обычном загрязнении выдаст недостоверные данные.

При правильном уходе и хранении контрольно-измерительных устройств любой быт, ремонт, отдых становится легче и приятнее.

Контрольно-измерительные инструменты. Выбор средств измерений

1. Выбор средств измерений и их применение

Выбор средств измерений при проверке точности деталей – один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

  • допустимую погрешность измерительного прибора–инструмента;
  • цену деления шкалы;
  • порог чувствительности;
  • пределы измерения, массу, габаритные размеры, рабочую нагрузку и др.

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее – до 20% допуска на изготовление изделия.

2. Контрольно-измерительные инструменты

К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка – штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.

Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.

Рис. 2. Методы измерения размеров штангенциркулем

Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).

Рис. 3. Установка нониуса: А – на размер 0,6 мм; Б – на размер 7 мм; В – на размер 7,4 мм

Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).

Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги – основной шкалы (например 7,4 мм на рис. 3, В).

Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.

Штангенрейсмасы предназначаются для точной разметки и измерения высот от плоских поверхностей.

Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.

Рис 4. Штангенрейсмас

Шкала и нониус такие же, как и у других штангенинструментов.

Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.

После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.

При разметке размер устанавливается по шкалам нониуса и штанги заранее. Риска на детали прочерчивается острым концом ножки при перемещении штангенрейсмаса по плите. При измерении с помощью игл (рис. 4, в) необходимо от показания штангенрейсмаса М вычесть величину m, которая соответствует такому положению рамки 2, когда острие иглы находится в одной плоскости с плоскостью основания .

Индикаторы часового типа. Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.

При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.

Читайте также:  Как проверить тэн стиральной машины

Практика измерений. Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.

Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б – на универсальном штативе; в – различные способы крепления индикаторной головки на штативе

При измерениях применяют универсальный штатив и другие приспособления.

Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.

При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.

При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.

Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).

Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах

Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.

Рис. 7. Микрометр для наружных измерений: 1 – пятка; 2 – микрометрический винт; 3 – стопорная гайка; 4 – втулка; 5 – барабан; 6 – трещотка; 7 – скоба

Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.

На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.

При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров – по верхней шкале втулки, а сотые доли миллиметра – по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.

Примеры отсчета по шкалам микрометра приведены на рис. 8.

Рис. 8. Методика отсчета размеров по шкале микрометрического инструмента: а – 11,0 мм; б – 9,36 мм; в – 10,5 мм; г – 9,86 мм

Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.

Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.

Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.

При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.

При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.

Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.

Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).

Рис. 9. Набор щупов

Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.

Поверочные плиты (рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.

На поверхности плит не должно быть коррозийных пятен или раковин.

Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)

Рис. 10. Поверочные плиты

Поверочные линейки стальные. Отклонения от плоскостности и прямолинейности (отклонения формы плоских поверхностей) контролируют с помощью поверочных линеек (рис. 11). Поверочные линейки выпускают лекальные с двусторонним скосом (рис. 11, а); трехгранные (рис. 11, б) и четырехгранные (рис. 11, в); с широкой рабочей поверхностью (прямоугольного сечения (рис. 11, г) и двутаврового сечения (рис. 11, д), “чугунные мостики” (рис. 11, е).

Рис. 11. Поверочные линейки

Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.

Поверочные линейки изготовляют длиной: лекальные – до 500 мм, “чугунные мостики” – до 2500 мм и более. Лекальные применяют для контроля прямолинейности поверхности детали “на просвет”, а поверочные линейки “чугунные мостики” – применяют для проверки прямолинейности “на краску”, с помощью щупа или папиросной бумажки.

При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.

Рис. 12. Схема контроля отклонения от плоскостности лекальной линейкой “на просвет”: а – визуально; б – с образцом просветов

Измерение отклонений от прямолинейности лекальными линейками “на просвет” требует навыка от исполнителя. Для выработки навыка оценивать на глаз по величине просвета величину отклонения от прямолинейности применяют образец просветов (рис. 12, б), который состоит из лекальной линейки 1, комплекта из четырех концевых мер длины с градацией 1 мкм, двух одинаковых концевых мер длины (2) и стеклянной пластины 3. При измерении между концевыми мерами длины и ребром линейки образуются “просветы”, окрашенные в разные цвета вследствие дифракции видимого света и от величины зазора между линейкой и концевой мерой длины.

Контрольно-измерительные приборы

Контрольно-измерительный прибор — средстство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто контрольно-измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператора.

Назначение контрольно-измерительных приборов (КИП) состоит в том, чтобы целенаправленным образом преобразовать исследуемые величины в форму, которая окажется наиболее удобной при конкретном использовании (или непосредственном восприятии) машиной или человеком.
К примеру, говоря о назначении контрольно-измерительных приборов, связанных с электроизмерениями (амперметры, гальванометры, вольтметры и проч.), надо понимать, что изучаемые электрические величины (количественно оценить изменения которых органы человеческих чувств непосредственно не способны) с их помощью преобразуются в определенные механические перемещения соответствующих указателей, в качестве которых выступают стрелка или световой луч. Аналогично и для преобразуемых в механические перемещения физических величин (в частности, пружинные манометры, волосяные гигрометры, ртутные термометры и проч.).
Соответствующее назначение контрольно-измерительных приборов должно подкрепляться уверенностью в получаемых данных, в процедурах исследований и контроля, для чего необходимо подтверждение пригодности аппаратуры для использования с точностью и по принятым эталонам.

Все контрольно-измерительные приборы можно классифицировать на различные группы по следующим признакам:

род измеряемой величины;
– способ отсчета;
– вид шкалы;
– метрологическое назначение.

Выделяют следующие группы контрольно-измерительных приборов в соответствии с родом измеряемой величины:
приборы для измерения линейно-угловых величин (линейки, рулетки, курвиметры, угломеры, уровни, микрометры, штангенциркули);
весоизмерительная техника:
1) меры массы (гири);
2) весоизмерительные приборы (весы);
приборы для измерения температуры:
1) контактный метод (термометры);
2) бесконтактный метод (тепловизоры, пирометры);
приборы для измерения давления, а также расхода вещества (деформационные манометры, дифференциальные манометры, преобразователи давления, расходомеры);
приборы химического анализа (газоанализаторы, ph-метры, алкометры);
электроизмерительные приборы (амперметры, вольтмаетры, омметры);
геодезические приборы (нивелиры оптические, построители лазерных плоскостей, нивелиры ротационные, теодолиты оптические, теодолиты электронные);
приборы для измерения физико-химических величин (анемометры, влагомеры, гигрометры, ареометры);
– прочее.

По способу отсчета все контрольно-измерительные приборы можно подразделить на следующие группы:
компарирующие приборы – при измерении этими приборами необходимо участие человека, в них происходит сравнивание измеряемой величины с мерой, эталонной величиной (пример: рычажные весы);
показывающие приборы – величина измеряемого параметра уазывается отсчетным устройством (пример: дальномер);
регистрирующие приборы – значение измеряемой величины в них непрерывно или в отдельные промежутки времени записывается (пример: логгер);
суммирующие приборыили интеграторы – в них происходитнепрерывное суммирование мгновенных значений измеряемого параметра (пример: счетчик электроинергии);
комбинированные приборы – они могут одновременно показывать и записывать величину измеряемого параметра (пример: секундомер).

По виду шкалы все контрольно-измерительные приборы можно подразделить на следующие группы:
цифровые;
аналоговые:
1) с линейной шкалой;
2) с дуговой шкалой;
3) с профильной шкалой;
4) с барабанной шкалой;
Такие шкалы могут быть подвижные и неподвижные, равномерные и неравномерные.

По метрологическому назначению различают эталонные и рабочие контрольно-измерительные приборы.Рабочий прибор – средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений.
Эталонные приборы предназначены для передачи размера единицы другим измерительным приборам, что составляет главную задачу поверки. Поэтому эталонные приборы называют также средствами поверки. Средства поверки – эталоны, поверочные установки и другие средства измерений, применяемые при поверке в соответствии с установленными правилами.

Контрольно измерительные приборы и их классификация

Современные контрольно-измерительные приборы (КИП) служат для измерения разных физических величин, физических процессов и различных технологических параметров. Область применения КИП очень широка. Суть работы каждого контрольно-измерительного прибора заключается в том, что практически любая физическая величина или измеряемый параметр преобразуются в электрический сигнал, удобный для обработки. Но так бывает не всегда. Встречаются и обычные механические приборы.

Раньше контрольно-измерительные приборы применялись в основном на промышленных предприятиях и очень редко в бытовых условиях. Сегодня же применение данных приборов в быту – обычная действительность. Что касается промышленности, то здесь работа контрольно-измерительных приборов тесно связана с автоматизацией технологии производства, поэтому часто применяется такое обозначение как КИПиА (контрольно-измерительные приборы и автоматика).

Классификация контрольно-измерительных приборов не очень сложна, хотя и достаточно обширна. Каждая категория приборов подразделяется на несколько видов, которые в свою очередь делятся на подвиды.

В настоящее время промышленностью выпускается большое количество разновидностей КИП, хотя на производстве и по сегодняшний день работают приборы старого советского образца

Большинство КИП классифицируются по роду измеряемого параметра, способу отсчёта, по классу точности и по своему назначению.

Род измеряемой величины

По данному параметру основные КИП можно разделить на приборы для замера температуры чего-либо (термометры, термопары), для определения уровня (уровнемеры), для измерения давления (манометры), для определения расхода жидкости или газа (расходомеры), а также для качественных измерений (измерение плотности, состава газообразных веществ, показателя влажности и т.д.).

Манометры делят на несколько подвидов: манометры для замеров избыточного давления, манометры для измерения перепадов давления и манометры для измерения абсолютной величины давления. Конструктивно манометры бывают механические и электроконтактные (ЭКМ). Также в настоящее время промышленностью выпускаются электронные приборы, измеряющие давление. Они в разы точнее обычных манометров.

Читайте также:  Как выбрать дисковую пилу

Способ отсчёта

По способу отсчёта бывают приборы с ручной наводкой, показывающие (отображающие) приборы:

  • самопишущие
  • суммирующие
  • сигнализирующие.

К первым относятся пирометры с функцией оптического измерения, гиревые весы и др. Для определения необходимой величины (в данном случае температуры или веса) необходимо участие человека.

  • Показывающие приборы, как понятно из названия, отображают измеряемую величину или параметр. Измеряемое значение можно наблюдать по стрелке или указателю на шкале прибора, на циферблате прибора или на цифровом дисплее. Показывающие приборы в свою очередь конструктивно подразделяют на стационарные и переносные.
  • Стационарные приборы устанавливаются в щитах, шкафах, т.е. при монтаже они строго фиксируются на одном месте и служат для постоянного измерения. Переносные приборы, в отличие от приборов стационарных, не используются для непрерывного измерения. Их основная функция – периодическое проведение измерений и очень часто в разных местах.
  • Самопишущие приборы в автоматическом режиме фиксируют и отображают измеряемые параметры на бумажной (картонной) ленте или на специальном вращающемся диске. Например, это может быть значение температуры в течение определённого промежутка времени.
  • Суммирующие приборы отображают суммарное (общее) значение измеряемой величины. Это может быть общее потребление газа, пара, воды, электроэнергии и т.д.
  • Сигнализирующие приборы при определённых значениях измеряемой величины или при возникновении определённой технологической ситуации подают сигнал в виде света или звука. К сигнализирующим приборам относятся приборы пожарной и охранной сигнализации, сигнализаторы загазованности и т.д.

Класс точности

Класс точности – это технический показатель прибора КИП, определяющий точность замера той или иной физической или технологической величины. Класс точности определяется числом. Например, это может быть 1 или 0,5. Чем меньше класс точности у прибора, тем точнее его показания.

Назначение

По своему назначению КИП бывают нескольких видов:

  • технические приборы,
  • контрольные, лабораторные,
  • образцовые и эталонные.

Технические приборы применяются на производстве. Обычно они достаточно просты в использовании и обладают надёжностью в эксплуатации.

Контрольными, а также лабораторными приборами поверяют технические приборы. Кроме того ими часто пользуются при пуско-наладочных или научных работах. Т.е. поверка контрольными приборами происходит по месту установки технических приборов, а лабораторными приборами выполняют поверку в специальной технической лаборатории. Класс точности контрольных и лабораторных приборов значительно выше, чем у технических.

Как образцовые, так и эталонные приборы тоже используются для поверки. Первые передают истинное значение измеренной величины от эталонов к остальным приборам

Каждый прибор обладает чувствительностью. Чувствительность – это способность любого прибора определять (улавливать) незначительные изменения (отклонения) измеряемого параметра. Благодаря высокой чувствительности прибор лучше реагирует на незначительные изменения величины или параметра.

В настоящее время большинство современных контрольно-измерительных приборов выполнено на качественной электронной и микропроцессорной элементной базе, позволяющей не только более точно производить измерения, но и передавать результаты измерений в систему автоматизации технологического процесса на предприятии.

Контрольно-измерительные приборы

Контрольно-измерительные приборы предназначены для контроля за работой и состоянием отдельных систем, агрегатов и автомобиля в целом. Такой контроль дает возможность своевременно принимать меры по поддержанию работоспособности автомобиля и его безаварийной эксплуатации.

Контрольно-измерительные приборы разделяются на указывающие и сигнализирующие.

Указывающие приборы имеют шкалу и стрелку. Чтобы оценить передаваемую информацию водитель должен посмотреть на шкалу и осознать показания.

Сигнализирующие приборы реагируют на одно значение измеряемо­го параметра и информируют об этом световым или звуковым сигналом.

Контрольно-измерительный прибор состоит из датчика и указате­ля, Датчик устанавливается в месте контроля, а указатель в месте наблюдения (в кабине). В сигнализирующих приборах указателем является сигнальная лампа.

По назначению все контрольно-измерительные приборы разделяются на группы: измерения температуры (термометры), измерения уровня топлива, контроля зарядного режима аккумуляторных батарей, измерения скорости автомобиля и пройденного пути (спидометры), измерения частоты вращения (тахометры).

Приборы для контроля температуры. Датчик такого прибора (см. рис. 80.) представляет собой латунный баллон, в наружной части которого имеется шестигранник под ключ и резьба для крепления. Внутри баллона размещены терморезистор 5 и пружина 3. Между стенкой баллона и пружиной находится изолирующая втулка 4. Терморезистор обладает свойством уменьшать сопротивление при увеличении температуры.

Рис. 80. Приборы для контроля температуры: а – датчик указателя температуры; б – поперечный разрез указателя; в – электрическая схема указателя; г – датчик сигнализатора аварийной температуры; 1 – винт; 2 – латунный баллон; 3- пружина

Основными частями указателя (рис. 80б) является каркас 6, три катушки 10, ось 9 с постоянным магнитом 11, экранирующий цилиндр 7. Каркас пластмассовый, состоит из двух частей, стянутых винтами. Одна катушка разметена под углом 90° к двум другим катушкам, имевшим обмотки встречного направления.

При включении датчика и указателя в сеть питания ток проходит по двум параллельным цепям (рис.80в): первая – катушки 17 и 16, термокомпенсационный резистор 18, вторая – катушка 15 и терморезистор 14 датчика. Магнитные потоки катушек 16 и 17 остаются постоянными, а магнитный поток катушки 15 зависит от сопротивления терморезистора 14. С увеличением температуры сопротивление этого резистора снижается, так в катушке 15 увеличивается, магнитное поле этой катушки также возрастает и суммарный поток всех трех катушек поворачивает магнит 11 со стрелкой, которая указывает соответствующую температуру. Термокомпенсационный и добавочные резисторы размещены в корпусе указателя.

Датчик сигнализатора (рис.80г) аварийной температуры имеет мас­сивный латунный корпус, на дне которого под шайбой 24 находится термобиметаллическая пластина 19 с контактом 22. В выводном зажиме 21 может перемешаться по резьбе тарельчатый контакт 22. При нагреве корпуса пластина 19 прогибается и контакты замыкаются.

Приборы контроля давления. По конструкции манометры могут быть непосредственного действия и электрические. Приборы непосредственного действия имеют совмещенный чувствительный элемент и указатель, а давление контролируемой среды подводится к чувствительному элементу по трубопроводу. Так устроены манометры для контроля давления воздуха.

Рис. 81 Приборы для контроля давления: а – манометр с трубчатой пружиной; б – датчик электрического манометра; в – электрическая схема указателя; г – датчик аварийного давления; 1 – циферблат; 2 -стрелка; 3 – крестовина; 4, 15, 30 – пружины; 5 – трубка; б – сектор; 7 – тяга; 8 – штуцер; 9, 11 – основание; 10 – мембрана; 12, 26 – реостат; 13 – ползунок; 14 -ось; 16 – качалка; 17 – регулировочный винт; 18, 31 – толкатели; 19 – штуцер; 20, 21, 22 – катушки; 23 – зажим питания; 24, 25 – резисторы; 27 – штекер; 28 – фильтр; 29 – изолятор; 32, 33 -контакты; 34 – диафрагма; 35 – корпус.

Основной деталью манометра непосредственного действия является трубчатая пружина 5 (рис.81 а), изогнутая в виде дуги и состоящая из одного неполного витка. К одному концу трубки через штуцер 8 подводится воздух (или жидкость), второй конец трубки соединен с тягой 7, которая через передаточные детали приводит в движение стрелку 2.

Под действием давления сжатого воздуха трубка разгибается, и ее свободный конец устанавливает стрелку в положение, соответствующее подведенному давлению.

В одном корпусе можно разместить два механизма и тогда получится один двух стрелочный манометр, контролирующий давление в разных местах системы.

Электрические манометры применяют для: контроля давления масла в смазочной системе двигателя. Датчик давления состоит из штуцера 19 (рис.816), основания 11, мембраны 10 с толкателем 18 и качалкой 16, реостата 12 с ползунком 13, возвратной пружины 13. Мембрана под давлением масла выгибается вверх и через качалку сдвигает ползун по реостату, уменьшая его сопротивление. При снижении давления мембрана под действием собственной упругости опускается, а возвратная пружина сдвигает ползун реостата в исходное положение.

Указатель давления имеет такую же конструкцию и принцип дейст­вия, как и указатель температуры. Датчик аварийного давления (рис.81 г) состоит из корпуса 35, диафрагмы 34 с толкателем 31 и пружиной 30, подвижного 32 и неподвижного 33 контактов. Сверху корпус закрыт изолятором 29 со штекером 27, под которым установлен специальный фильтр 28 уравновешивающий давление в полости под мембраной с атмосферным. Давление замыкания контактов обеспечивается тарировкой пружины.

Приборы контроля уровня топлива. Датчик указателя уровня топлива представляет собой проволочный реостат, ползун которого перемещается через рычаг поплавком топливного бака. Датчики устанавливаются в каждом баке, их сигнал передается на общий указатель через переключатель.

Датчик может иметь специальный контакт, который замыкается при снижении уровня топлива до минимального размера (на 50. 100 км пути).

Указатель уровня топлива аналогичен по конструкции указателя температуры и давления, отличается от них обмоточными данными, схемой соединения катушек, и резисторов. Шкалу указателя градуируют в долях объема бака, поэтому на ней имеются отметки 0,-1/4, 1/2, 3/4, П (полный).

Контроль зарядного режима аккумуляторных батарей производится с помощью амперметра, устанавливаемого последовательно в зарядную цепь. На шкале амперметра нуль отсчета показаний находится посредине, а знаки «+» с одной стороны и «-» с другой стороны. Отклонение стрелки в сторону знака. “+” указывает на заряд аккумуляторов батарей, а в сторону «-» – ее разряд.

По амперметру можно судить также о исправности генератора и степени заряженности аккумуляторных батарей.

Приборы для измерения скорости движения автомобиля и частоты вращения коленчатого вала двигателя. Такими приборами являются спи­дометр и тахометр. Спидометр состоит из скоростного узла, показывающего скорость в данный момент, и счетного узла, отсчитывающего пройденный путь. Оба узла имеют общее основание и работают от одного общего валика.

По приводу спидометра разделяются на приборы с приводом от гиб­кого вала И с электроприводом. Гибкие валы применяют, если его длина не превышает 3,5 м. При большей длине, а также на автомобилях с откидывающейся кабиной применяют спидометры с электроприводом.

Рис. 82 Схема спидометра с гибким приводом: 1 – валик; 2 – фитиль; 3 – заглушка; 4 – магнит; 5 – диск; 6 – картушка; 7 – магнит; 8 – пружина; 9 – стрелка; 10 – рычаг; 11,12 – привод счетного узла

Основными частями спидометра с гибким приводом (рис.82) являют­ся валик 1 с магнитом 4, картушка 6, спиральная пружина 8, экран 7, валы 11, 12. привода счетного узла. Картушка выполнена из алюминия, установлена на своей оси и охватывает магнит. Экран защищает магнит и картушку от влияния посторонних магнитных полей и концентрирует магнитное поле прибора в рабочем направлении.

При вращении валика поле магнита наводит в картушке вихревые токи, создающие свое магнитное поле. Взаимодействие полей магнита и картушки создает крутящий момент, стремящийся повернуть картушку в направлении вращения магнита.

При повороте картушка перемещает стрелку и растягивает пружину 8. Взаимодействие момента, поворачивающего картушку, и усилие пружины устанавливают стрелку в положение, пропорциональное частоте вращения валика 4 и, следовательно, скорости движения автомобиля.

Вращение к спидометру передается от раздаточной коробки гибким валом. Гибкий вал состоит из троса с наконечниками и гибкой оболочки с ниппелями и гайками. Трос состоит из нескольких винтовых многозаходных пружин, навитых одна на другую в несколько слоев, и внутреннего сердечника из проволоки. В оболочку троса закладывается смазка.

Спидометр с электроприводом состоит из датчика и приемника с указателем, соединенных экранированным проводом.

Рис. 83 Электрический спидометр СП – 170: а – датчик; б – приемник с указателем; в – электрическая схема; 1 -втулка крепления провода; 2,4 -обмотки; 3 -вал ротора; 5, 8 – постоянные магниты; 6 -электродвигатель; 7 -болт крепления; 9 – кожух; 10 – корпус; 11 – печатная плата; 12 – провод; 13 -зажим; 1 – датчик; П – указатель.

Датчик (рис.83) представляет собой электрический трехфазный генератор с ротором в виде постоянного магнита; датчик установлен на раздаточной коробке.

Приемник и указатель объединены в один механизм. Скоростной и счетные узлы спидометра приводятся в действие трехфазным синхронным электродвигателем 6, который имеет три полюса с обмотками 4 и якорь в виде постоянного магнита.

На оси якоря установлен магнит 8 скоростного узла спидометра. При движении автомобиля якорь датчика вращается и создает в каж­дой катушке импульсы напряжения, которые по отдельному проводу пода­ются на базу одного из трех транзисторов электродвигателя. При открытии транзисторов от сети автомобиля в обмотки электродвигателя подается ток, что привозит к вращению якоря и магнита скоростного узла.

Тахометр имеет такую же конструкцию и принцип действия, как и спидометр, исключая счетный узел и градуировку шкалы.

Техническое обслуживание контрольно-измерительных приборов сводится к содержанию их в чистоте Проверке креплений и надежности контактных соединений.

Характерными неисправностями контрольно-измерительных приборов могут быть отказ в работе или неправильные показания.

Причиной отказа прибора является обрыв в цепи от включателя при­боров и стартера до указателя. Неправильные показания прибора могут быть вызваны обрывом в одной из катушек указателя или в цепи датчика, а также из-за плохих контактов в соединениях. Обрыв в цепи можно проверить контрольной лампой. Неисправные указатели и датчики подлежат замене.

Ссылка на основную публикацию