Виды и характеристики постоянных магнитов

Виды и характеристики постоянных магнитов

В нашем магазине представлены постоянные магниты различных сплавов и марок материала. Неодимовые магниты, ферриты, самарий кобальт, альнико.

История применения постоянных магнитов

С древнейших времен постоянные магниты применялись в медицине. Клеопатра носила магнитный амулет. В Древнем Китае применялись магнитные камни для лечения тела и восстановления энергии «Ци».

О благоприятном влиянии постоянных магнитов писали известные врачи и философы: Гиппократ , Авиценна , Аристотель . В средневековье врач Гилберт опубликовал сочинение «О магните», лечил королеву Елизавету I от артрита с помощью постоянного магнита. Русский врач Боткин также использовал методы магнитотерапии .

Первым искусственным магнитным материалом была углеродистая сталь, которая содержала примерно 1,2—1,5 % углерода.

Магнитные свойства стали восприимчивы к механическим и температурным воздействиям. В результате использования постоянных магнитов на основе углеродистой стали отмечалось «старение» ее магнитных свойств.

Доктор Хонд из Тохокского университета создал новый тип стали — КS с высокой намагниченностью и значительной коэрцитивной силой, методом легирования стали хромом и вольфрамом до 3 %, а также кобальтом с хромом до 6 %.

Высокая остаточная индукция у постоянных магнитов из сталей KS осуществлялась благодаря уменьшению размагничивающего фактора. С этой целью постоянные магниты изготавливались удлинённой, подковообразной формы.

В 1932 году доктор Т.Мискима создал новый вид стали МК методом легирования стали KS никелем , медью и алюминием . Это качественный скачок в разработке постоянных магнитов, которые позднее получили название Альнико (ЮНДК (по российским стандартам).

Значительный шаг в этой области сделали годах японские ученые, доктор Такэси Такэи и Ёгоро Като из Токийского технологического института , которые создали постоянные магниты – ферриты. Ферриты, изготовленные по керамической технологии, обладали Коэрцитивной сил ой 48-72 кА/м (600—900 Э).

В Японии коммерческие ферритовые магниты появились в 1955 году, в России — в середине 1960-х.

В лаборатории U.S. Air Force Material Research найдено интерметаллическое соединение самария с кобальтом ( SmCo5 ). Это значительный технологический прорыв в изготовлении постоянных магнитов.

Постоянный магнит, изготовленный из сплава SmCo5 , по характеристикам достиг (ВН)макс = 16-24 МГсЭ, а на соединении Sm2Co17 — 32 МГсЭ, коэрцитивная сила была увеличена до 560—1000 кА/м.

Постоянные магниты из сплава Самарий-Кобальт изготавливаются промышленностью с 1980-х годов. Примерно в это же время были открыты в США и Японии неодимовые магниты из материалов Неодим-Железо-Бор (Nd-Fe-B).

В Японии производство неодимовых магнитов осуществлялось по аналогии магнитов SmCo: производство порошка из литого сплава, далее прессование в магнитном поле и спекание.

В США при производстве неодимовых магнитов применяется следующая технология: сначала создается аморфный сплав, потом он измельчается и изготавливается композиционный материал.

Магнитный порошок смешивается с резиной, винилом, нейлоном или другими пластиками в композиционную массу, из которой после прессования изготавливаются различные изделия.

Магниты из композиционного материала имеют более низкие магнитные свойства по сравнению со спеченными материалами, легко обрабатываются механически, и не требуют гальванических покрытий.

Магниты из Nd2Fe14B появились на рынке постоянных магнитов в 1990-х годах и очень быстро достигли на спечённых образцах энергии в 400 кДж/м 3 . У неодимовых магнитов широкая сфера применения:

Магнит обладает очень большой прижимной (отрывной) силой, Неодим Железо Бор (NdFeB широкое применение в промышленности, а также решает ряд задач в бытовой (домашней) сфере.

Неодимовые магниты оказались более востребованными на рынке по сравнению с другими видами постоянных магнитов, особенно в микроэлектронике.

3 разных типа магнитов и их применение

Магниты – это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.

Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.

Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.

1. Постоянные магниты

После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:

I) Ферритовые магниты

Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.

Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.

Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.

Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.

Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.

II) магниты Алнико

Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь. В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.

Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.

Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах – до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.

Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.

Читайте также:  Что такое и где применяется показывающий мост серии КМ 140?

Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров – это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.

III) Редкоземельные магниты

Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.

Два типа редкоземельных магнитов – самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.

Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.

Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.

Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.

Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.

IV) одномолекулярные магниты

К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах. Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.

Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.

Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.

Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.

2. Временные магниты

Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.

Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.

Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.

Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии – от высокоскоростных поездов до высокотехнологичного пространства.

3. Электромагнит

Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.

Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.

Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.

Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.

Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.

Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.

Виды и характеристики постоянных магнитов







Энциклопедия магнетизма.

Какие существуют виды магнитов?

Существуют три основных вида магнитов:

  • Постоянные магниты.
  • Временные магниты.
  • Электромагниты.
Постоянные магниты.

Постоянные магниты – наиболее привычный нам вид магнитов. Они постоянные в том смысле, что будучи однажды намагничены, эти магниты сохраняют некоторый уровень остаточной намагниченности. Как мы увидим в дальнейшем, разные виды постоянных магнитов имеют различные характеристики или свойства, относящиеся к тому, как легко они размагничиваются, насколько они сильные, как их сила меняется с температурой и т. д.

Временные магниты.

Временные магниты – это магниты, которые действуют как постоянные магниты только тогда, когда находятся в сильном магнитном поле, и теряют свой магнетизм, когда магнитное поле исчезает. В качестве примера можно привести скрепки и гвозди, а также другие изделия из “мягкого” железа.

Электромагниты.

Электромагнит – это туго намотанные на каркас витки провода, обычно с железным сердечником, который действует как постоянный магнит только тогда, когда по проводу течет ток. Сила и полярность магнитного поля, создаваемого электромагнитом, обусловлены изменением величины и направления электрического тока, текущего по проводу.

Материалы, используемые для производства постоянных магнитов.

Существует 4 класса современных коммерческих магнитов, каждый из которых основывается на своем составе используемых материалов. Внутри каждого класса различают семейства градаций со своими магнитными свойствами. Эти основные классы следующие:

  • Неодим-железо-бор ( Nd-Fe-B, NdFeB, NIB );
  • Самарий-кобальт ( SmCo) ;
  • Альнико ( Alnico );
  • Керамические (ферриты).

    Таблица, приведенная ниже, представляет некоторые специальные характеристики этих классов постоянных магнитов.

  • МатериалBr
    (Гс)
    Hc
    (Э)
    ( BH ) max
    (МГсЭ)
    Tc of Br
    (% на º С)
    Tmax
    ( º С)
    Tcur
    ( º С)
    Nd-Fe-B12 80012 30040-0.12150310
    SmCo10 5009 20026-0.04300750
    Альнико12 5006405.5-0.02540860
    Керамические3 9003 2003.5-0.20300460

    Магниты из сплава неодим-железо-бор и самарий-кобальт известны также как редкоземельные магниты, так как в их состав входят элементы редкоземельной, или лантаноидной, группы периодической системы элементов. Они были разработаны в 70-х и 80-х годах прошлого века. Как видно из таблицы, эти магниты являются сильнейшими из постоянных магнитов, и их трудно размагнитить. В тоже время, рабочая температура у магнитов из сплава неодим-железо-бор наименьшая.

    Магниты альнико сделаны из сплава алюминия, никеля, кобальта и железа. Они были разработаны в 40-х годах прошлого века. Как видно из таблицы, данный класс магнитов меньше всего подвержен влиянию температуры, но легко размагничивается. В тоже время, максимальная рабочая температура у данного класса магнитов наибольшая.

    Виды магнитов

    В интернете довольно много информации по этому вопросу, но обычно она весьма однобока. Всё и сразу и в одной статье – только для вас!

    Виды магнитов с точки зрения физики

    Начнём со школьной скамьи: что же учитель физики рассказал бы нам про магниты?

    Есть три типа магнитов: постоянные, временные и электромагниты. Первые заряжаются раз и навсегда, вторые работают только в магнитном поле, третьи – только когда есть ток.

    Все постоянные магниты делятся на естественные и искусственные. Естественные – это магнитный железняк, например. Он сам по себе притягивает к себе металлические предметы, ничего с ним для этого делать не нужно. Или вот матушка-Земля – тоже естественный магнит. Только притягивает она не металл, а всё подряд. В том числе и нас свами.

    Искусственные постоянные магниты делаются людьми, и их типы зависят от материала, из которого сделан магнит. Здесь бывают ферриты – в их состав входит железо, неодимовые магниты, Альнико, SmCo и магнитопласты. Собственно, в число магнитопластов входит магнитный винил: именно его используем мы при изготовлении магнитиков.

    С постоянными разобрались. Временные магниты – это изделия из металлов, которые намагничиваются, попадая в магнитное поле и получают ненадолго способность самим притягивать другие металлические предметы. Например, скрепки и гвозди.

    Электромагниты образуются с помощью намотанной проволоки, по которой пускают ток. На электромагнитах работает наша с вами техника.

    За сим с физикой заканчиваем: основы вам теперь известны!

    Виды магнитов с точки зрения сферы употребления

    Прочитает обычный человек, что думает о магнитах физик, да спросит: «Ну и что с того?» Не очень-то полезная информация. Нам вот интереснее, зачем вообще нужны магниты?

    Информация. Самый понятный пример: компас. Магнит ориентирует по сторонам света. Но это далеко не единственный прибор с магнитом: например, в том же амперметре он тоже есть.

    Промышленность. Магнит используется в производстве, причём – как для работы с очень большими предметами, так и – с мельчайшими.

    Медицина. Кто-то кричит о вреде магнитов для здоровья, а кто-то использует их для лечения. Магниты бывают разные!

    Техника. Огромное количество техники основано на работе магнитов. Компьютеры и телевизоры, телефоны и многие другие приборы стали возможны благодаря магнитам.

    Реклама и бизнес. Сувенирные магниты – неистощимый источник дохода для любого туристического места. Так же магниты с логотипом востребованы для промо-акций.

    Вспомогательная функция. Магнит часто облегчает разные задачи. Например, с помощью губки в сочетании с магнитами можно отлично помыть стекло аквариума изнутри. А на современную школьную доску магниты позволяют прикреплять иллюстративные материалы.

    Виды магнитов с точки зрения производителей магнитов

    Очень забавно, но производители магнитов имею свою собственную классификацию, которая не очень-то полезна. Поэтому мы скажем о ней лишь в общих словах.

    Существуют магниты попроще: обычной формы и с картинкой, а есть посложнее: с градусниками, с блокнотами, календарями, часами, записными книжками, магниты-закладки, магниты-визитки, магниты-открытки и прочие гибриды.

    Виды магнитиков на холодильник

    И ещё пару слов скажем о тех магнитиках, которые обычно встречаются на холодильнике.

    Сувенирные магнитики. Их привозят из городов и стран. Обычно на них можно увидеть достопримечательности, узнаваемые символы, известных людей, флаги и государственную символику.

    Промо-магнитики. Чаще всего их вам дарят как клиенту или партнёру. Обязательно увидите на таком логотип компании, а часто – ещё и контакты.

    Магнитики с цитатами и анекдотами. В любом книжном их сейчас – завались.

    Магнитики в форме чего бы то ни было. Кошечки и сельдерей, буквы алфавита и профиль В.В.Путина, тут море вариантов! Тут часто попадаются магниты-игрушки.

    Подарочные магнитики. Преподносится по случаю и часто содержат поздравительную надпись, пожелание, красивую фотографию виновника торжества и прочее. Подарочные магниты очень красивы.

    Уникальные магнитики. Обычно делаются своими руками или же на заказ. Отличаются какой-нибудь необычной фишкой или любовно проработанными деталями, а так же использованием необычных материалов.

    Итак, теперь вы ориентируетесь в видах магнитов! Посему предлагаем вам: постоянные искусственные магнитопласты из магнитного винила рекламно-сувенирные на заказ! Ух, такой фразой пугать только ;

    Мы сделаем вышитый магнит из любой картинки, надписи, сочетания картинок, фотографии, рисунка от руки. Все ваши фантазии – воплотим в жизнь, обращайтесь!

    Заполните форму заказа вышивки, не забудьте указать, что вам нужен магнит. Наши менеджеры рассчитают стоимость вашего заказа и свяжутся с вами для обсуждения всех деталей. Так же можно попросить дизайнеров помочь с эскизом, если у вас его ещё нет.

    Полюбуйтесь на нашу вышивку, ознакомьтесь с ценами!

    Постоянные магниты и их свойства

    Наиболее знакомыми и привычными для многих людей являются постоянные магниты. Их постоянство заключается в поддержании определенного уровня намагниченности, в зависимости от конкретных условий, в которых они находятся. Поэтому свойства постоянных магнитов могут различаться в зависимости от индивидуальных характеристик и материалов, использованных для их изготовления.

    Современные магнитотвердые материалы

    Во многих электрических машинах применяются магнитные цепи, возбуждение которых проходят через постоянные магниты. Для изготовления этих элементов используются специальные материалы двух основных типов. Первый тип относится к магнитомягким материалам, характеризующимся узкой петлей гистерезиса. Основой для изготовления служит низкоуглеродистая сталь или железоникелевые и железокобальтовые сплавы.

    Во втором случае используются магнитотвердые материалы с высокой остаточной индукцией и коэрцитивной силой. Их собственная намагниченность позволяет создавать интенсивные магнитные потоки. Материалами для изготовления служат сплавы, основой которых является алюминий, железо, кобальт, никель и редкоземельные материалы.

    Использование редкоземельных материалов в интерметаллических соединениях считается наиболее эффективным при создании постоянных магнитов. Среди них следует отметить соединение кобальт-самарий, а также сплав железо-неодим-бор. Они отличаются высокой удельной магнитной энергией. Кривая размагничивания имеет форму с очень высоким коэффициентом. Нестабильные характеристики отличаются низким температурным коэффициентом. Благодаря хорошим технологическим показателям, данные материалы при необходимости легко свариваются или склеиваются. Это позволяет использовать магнитные элементы в самых разных конструкциях машин. Рабочий температурный диапазон таких магнитов находится в пределах от -60 до +200 градусов.

    Физические качества постоянных магнитов

    К постоянным магнитам относятся физические тела, способные сохранять намагниченность в течение продолжительного времени. Основное свойство заключается в возможности притягивать железные предметы и тела, изготовленные из сплавов на основе железа.

    В каждом постоянном магните имеются северный и южный магнитные полюса. В этих местах сила магнитного поля имеет максимальное значение. Для изготовления наиболее сильных магнитов используется железо, сталь или чугун. Основой магнитов со слабыми свойствами являются кобальт и никель. Природные магниты естественного происхождения происходят из магнитного железняка, существующего в природе в виде железной руды. Взаимодействие магнитного поля с железом позволяет получать искусственные магниты.

    Основные свойства магнитов проявляются в их взаимодействии. При сближении происходит притягивание разноименных полюсов друг к другу. И, наоборот, полюсы с одинаковым значением отталкиваются. Такое поведение физических тел объясняется наличием в них магнитных полей, взаимодействующих между собой.

    Многие ученые с давних пор интересовались причинами, по которым происходит намагничивание железа. Французский физик Ампер выдвинул гипотезу о существовании элементарных электрических токов, действующих внутри определенных веществ. Причиной их образования считаются электроны, движущиеся вокруг атомных ядер и одновременно вокруг собственной оси. Движение электронов приводит к возникновению элементарных магнитных полей. Когда железный предмет попадает под действие внешнего магнитного поля, происходит переориентация всех полей, имеющихся в железе, и образование собственного поля. В результате такого воздействия железо превращается в магнит.

    Электричество из магнита

    Элегаз и его свойства

    Инфракрасные обогреватели – характеристики и свойства

    Виды и характеристики постоянных магнитов

    1. Магнетизм — форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля. Орбитальные и спиновые магнитные моменты элементарных частиц, атомов и молекул, а в макроскопическом масштабе — электрический ток и постоянные магниты. Наряду с электричеством, магнетизм — одно из проявлений электромагнитного взаимодействия. Основной характеристикой магнитного поля является вектор индукции, совпадающий в вакууме с вектором напряженности магнитного поля.

    Магнитный момент, магнитный дипольный момент — основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина. Магнитный момент измеряется в А*м2 или Дж/Тл (СИ).

    Формулы для вычисления магнитного момента
    В случае плоского контура с электрическим током магнитный момент вычисляется как
    , где I — сила тока в контуре, S — площадь контура, n — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

    Для произвольного замкнутого контура магнитный момент находится из:

    где r — радиус-вектор проведенный из начала координат до элемента длины контура dl

    В общем случае произвольного распределения токов в среде:

    где j — плотность тока в элементе объёма dV.

    2. Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции B. В СИ магнитная индукция измеряется в Тесла (Тл).

    Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

    Можно также рассматривать магнитное поле, как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитных волны.


    Картина силовых линий магнитного поля, создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

    Проявление магнитного поля
    Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к вектору v. В системе единиц СИ сила Лоренца выражается так:

    где a – угол между направлением вектора скорости частицы v v и направлением вектора магнитного поля B

    Также магнитное поле действует на проводник с током. Сила, действующая на проводник будет называться силой Ампера. Эта сила складывается из сил, действущих на отдельные движущиеся внутри проводника заряды.

    Взаимодействие двух магнитов
    Наиболее часто встречаемое проявление магнитного поля — взаимодействие двух магнитов: подобные полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами, как взаимодействие между двумя монополями, но эта идея не приводит к правильному описанию явления.

    Правильнее будет сказать, что на магнитный диполь помещённый в неоднородное поле действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем.

    Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле:

    Сила, действующую на магнит со стороны неоднородного магнитного поля, может быть также определенна суммированием всех сил, действующих на элементарные диполи, составляющие магнит.

    Энергия магнитного поля
    Энергию магнитного поля можно найти по формуле:

    где: Ф — магнитный поток, I — ток, L — индуктивность катушки или витка с током.

    3. Постоянный магнит — изделие различной формы из жёсткого материала с высокой остаточной магнитной индукцией, сохраняющие состояние намагниченности в течение длительного времени. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

    Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита.

    Индукция постоянного магнита Bd не может превышать Br: равенство Bd = Br возможно лишь в том случае, если магнит представляет собой замкнутый магнитопровод, то есть не имеет воздушного промежутка, однако постоянные магниты, как правило, используются для создания магнитного поля в воздушном (или заполненном другой средой) зазоре, в этом случае Bd

    Читайте также:  Устройство и применение автокранов
    Ссылка на основную публикацию