Устройство механического тормоза для электродвигателя

Схемы торможения асинхронных двигателей

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Такая остановка электродвигателя при движении по инерции называется свободным выбегом . Многие электродвигатели, работающие в продолжительном режиме или со значительными нагрузками, останавливают путем свободного выбега.

В тех же случаях, когда продолжительность свободного выбега значительна и оказывает влияние на производительность электродвигателя (работа с частыми пусками), для сокращения времени остановки применяют искусственный метод преобразования кинетической энергии, запасенной в движущейся системе, называемый торможением .

Все способы торможения электродвигателей можно разделить на два основных вида: механическое и электрическое.

При механическом торможении кинетическая энергия преобразуется в тепловую, за счет которой происходит нагрев трущихся и прилегающих к ним частей механического тормоза.

При электрическом торможении кинетическая энергия преобразуется в электрическую и в зависимости от способа торможения двигателя либо отдается в сеть, либо преобразуется в тепловую энергию, идущую на нагрев обмоток двигателя и реостатов.

Наиболее совершенными считают такие схемы торможения, при которых механические напряжения в элементах электродвигателя незначительны

Схемы динамического торможения асинхронных двигателей

Для управления моментом при динамическом торможении асинхронным двигателем с фазным ротором по программе с заданием времени используются узлы схем, приведенные н а рис. 1, из которых схема р и с. 1, а применяется пр и наличии сети постоянного тока, а схема рис. 1, б — при отсутствии ее.

В качестве тормозных резисторов в роторе используются пусковые резисторы R1, включение которых в режиме динамического торможения производится отключением контакторов ускорения, показанных в рассматриваемых узлах схем условно в виде одного контактора КМ3, команда на отключение которого подается блокировочным контактом линейного контактора КМ1.

Рис. 1 Схемы управления динамическим торможением асинхронных двигателей с фазным ротором с заданием времени при наличии и отсутствии сети постоянного тока

Эквивалентное значение постоянного тока в обмотке статора при торможении обеспечивается в схеме рис. 1, а дополнительным резистором R2, а в схеме рис. 1. б соответствующим выбором коэффициента трансформации трансформатора Т.

Контактор торможения КМ2 может быть выбран как на постоянном, так и на переменном токе в зависимости от требуемого числа включений в час и использования пусковой аппаратуры.

Приведенные н а рис. 1 схемы управления могут использоваться для управления режимом динамического торможения асинхронного двигателя с короткозамкнутым ротором. Для этого обычно используется схема с трансформатором и выпрямителем, приведенная на р и с. 1 , б.

Схемы торможения противовключением асинхронных двигателей

При управлении моментом при торможении противовключением асинхронного двигателя с короткозамкнутым ротором с контролем скорости применяется узел схемы, приведенный на рис. 2.

В качестве реле противовключения используется реле контроля скорости SR, укрепляемое на двигателе. Реле настраивается на напряжение отпадания, соответствующее скорости, близкой к нулю и равной (0,1 – 0,2) ω уст.

Схема используется для остановки двигателя с торможением противовключением в реверсивной (рис. 2, а) в в нереверсивной (рис. 2, б) схемах. Команда SR используется для отключения контакторов КМ2 или КМЗ и КМ4, отключающих обмотку статора от напряжения сети при скорости двигателя, близкой к нулю. При реверсировании двигателя команды SR не используются.

Рис. 2 Узлы схемы управления торможения противовключением асинхронного двигателя с коооткозамкнутым ротором с контролем скорости при остановке в реверсивной и нереверсивной схемах

Узел управления асинхронным двигателем с фазным ротором в режиме торможения противовключеиием с одной ступенью, состоящей из R1 и R2, приведен на рис. 3. Управляющее реле противовключения KV, в качестве которого применяется, например, реле напряжения постоянного тока типа РЭВ301, которое подключено к двум фазам ротора через выпрямитель V. Реле настраивается на напряжение отпадания.

Часто для настройки реле KV используется дополнительный резистор R3. Схема в основном применяется при реверсировании АД со схемой управления, приведенной на рис. 3, а, но может использоваться и при остановке в нереверсивной схеме управления, приведенной на рис. 3, б.

При пуске двигателя реле противовключения КV не вклгочатся и ступень противовключения резистора ротора R1 выводится сразу после подачи управляющей команды на пуск.

Реле KV отключает контакторы КМ4 и КМ5 и тем самым вводит полное сопротивление Rl + R 2 ротор двигателя.

В конце процесса торможения при скорости асинхронного двигателя, близкой к нулю и составляющей примерно 10 – 20 % установившейся начальной скорости ω пер = (0,1 – 0,2) ωуст , реле KV отключается, обеспечивая команду на отключение ступени противовключения R1 с помощью контактора КМ4 и на реверсирование электродвигателя в реверсивной схеме или команду на остановку электродвигателя в нереверсивной схеме.

В приведенных схемах в качестве управляющего устройства может применяться командоконтроллер и другие аппараты.

Схемы механического торможения асинхронных двигателей

При остановке асинхронных двигателей, а также для удержания механизма передвижения или подъема, например в крановых промышленных установках, в неподвижном состоянии при отключенном двигателе применяется механическое торможение. Оно обеспечивается электромагнитными колодочными или другими тормозами с трехфазным электромагнитом переменного тока, который при включении растормаживает тормоз. Электромагнит тормоза YB включается и отключается вместе с двигателем (рис 4, а).

Напряжение на электромагнит тормоза YB может подаваться контактором торможения КМ2, если нужно отключать тормоз не одновременно с двигателем, а с некоторой задержкой по времени, например после окончания электрического торможения (рис. 4, б)

Выдержку времени обеспечивает реле времени КТ, получающее команду на начало отсчета времени, обычно при отключении линейного контактора КМ1 (рис. 4, в).

Рис. 4. Узлы схем, осуществляющих механическое торможение асинхронных двигателей

В асинхронных электроприводах применяются также электромагнитные тормоза постоянного тока при управлении электродвигателем от сети постоянного тока.

Схемы конденсаторного торможения асинхронных двигателей

Для торможения АД с короткозамкнутым ротором применяется также конденсаторное торможение с самовозбуждением. Оно обеспечивается конденсаторами C1 – С3, подключенными к обмотке статора. Включаются конденсаторы по схеме звезды (рис. 5, а) или треугольника (рис. 5, б).

Рис. 5. Узлы схем, осуществляющих конденсаторное торможение асинхронных двигателей

Механический тормозной привод

Механический тормозной привод представляет собой систему тяг, рычагов, тросов, шарниров и т. п., соединяющих тормозную педаль с тормозными механизмами. До середины 1940-х гг. такой привод применялся в рабочей и стояночной тормозных системах. Главное преимущество механического привода — простота и надежность конструкции. В простейшем виде он состоит из тормозной педали, установленной в кабине водителя, соединенной тягами или тросами с разжимным устройством механического типа колесных или трансмиссионных тормозов.
С установкой тормозных механизмов на все четыре колеса, вместо использовавшихся ранее двух, механический привод перестал применяться в рабочей системе. Это объясняется сложностью компоновки привода, а главное — невозможностью достигнуть в эксплуатации одновременного срабатывания всех четырех механизмов и сложностью распределения приводных сил между осями. Тщательные регулировки давали лишь кратковременный эффект. Множество шарнирных соединений и опор в механическом приводе приводило к большим потерям на трение. Этими потерями объясняется низкий КПД механического привода. Если в приводе используются тросы, то необходимы частые регулировки, т.к. тросы вытягиваются. Перечисленные недостатки определяют непригодность механического привода для рабочих тормозных систем современных колесных транспортных средств. Однако из-за неограниченного времени действия при удержании автомобилей и прицепов на уклонах и стоянках привод широко применяется в стояночных тормозных системах.

Механический привод стояночной тормозной системы:
1 — кнопка рычага привода стояночного тормоза;
2 — рычаг привода стояночного тормоза;
3 — рычаг ручного привода колодок;
4 — задние тормозные колодки;
5 — задний трос;
6 — регулировочная гайка с контргайкой;
7 — уравнитель заднего троса;
8 — направляющий ролик;
9 — передний трос;
10 — упор выключателя сигнализатора включения стояночного тормоза

Читайте также:  Виды работ по обслуживанию электроустановок

Обычный механический привод стояночной системы работает следующим образом. Для удержания автомобиля на стоянке водитель перемещает рычаг тормоза на себя. Это перемещение через тягу передается на уравнительный рычаг, который вытягивает тросы, проложенные к обоим тормозным механизмам задних колес.
В тормозном механизме имеется специальный приводной рычаг, соединенный одним своим концом с тормозной колодкой, а через планку — с другой колодкой. При вытягивании троса рычаг поворачивается и разводит колодки, прижимая их к барабану. В затянутом положении тяга и тросы удерживаются защелкой, входящей в зубья храпового механизма. Для растормаживания механического привода водитель немного приподнимает рычаг, утапливает в рукоятке кнопку и, удерживая ее в нажатом положении, опускает рычаг вниз. При нажатии кнопки фиксирующая защелка выходит из зацепления с зубьями механизма. Уравнительный рычаг обеспечивает подачу к обоим тормозам одинаковых приводных усилий и прижатие их колодок к барабану с одинаковыми силами.
Привод стояночной тормозной системы современных автомобилей и прицепов с энергоаккумулятором относится к пневматическому типу привода. Энергоаккумулятор представляет собой мощную пружину, установленную внутри цилиндра и воздействующую на поршень со штоком. Поршень поднимается и опускается при изменении давления воздуха в цилиндре, которое водитель осуществляет специальным краном. При отсутствии давления воздуха под поршнем, пружина перемещает его со штоком в крайнее положение, что приводит к раздвиганию колодок клиновым или кулачковым механизмом и к затормаживанию автомобиля на стоянке. Пружина может удерживать автомобиль неограниченно долго. Для растормаживания воздух от крана подается под поршень, который переводится в первоначальное положение, при котором колодки механизма растормаживаются, а пружина сжимается, запасая энергию для последующего торможения.

Устройство механического тормоза для электродвигателя

Электродвигатель с тормозом

ООО «СОПТЕХ» производит по заказу трехфазные асинхронные электродвигатели с электромагнитными тормозами различных типов многочисленных разнообразных модификаций и всевозможных специализированных исполнений под требования Заказчика, применяемых для:

  • комплектных регулируемых и нерегулируемых электроприводов;
  • крановых механизмов подъема и передвижения (перемещения);
  • привода механизмов, требующих быстрого, точного и фиксированного останова в течение регламентированного времени при отключении их от питающей сети;
  • обрабатывающих станков и центров;
  • конвейеров и автоматических линий;
  • автоматизированных транспортно-складских систем;
  • и т.д.

Электродвигатели производятся на базе двигателей основного исполнения серий АИР, А, 5АМХ, 5АМ, 6АМ, AIS и др. высотой оси вращения от 56 мм и выше. Номинальный режим работы электродвигателей с электромагнитным тормозом — повторно-кратковременный S4 с продолжительностью включения ПВ40 с числом включений в час 240, 120 и 60 в зависимости от исполнения. Электродвигатели могут оснащаться энкодером и узлом независимой вентиляции.

Описание

Электродвигатели с дисковым тормозом, включаемым пружинами и отпускаемым электромагнитом, предназначены для торможения вращающихся частей машины, а их задачей является:

  • аварийное торможение с целью обеспечения функции безопасности привода,
  • остановка исполнительных механизмов машин, связанная с функцией их позиционирования,
  • сокращение к минимуму выбега приводов (требования безопасности, закрепленные правилами UDT),

Смонтированный на электрическом двигателе тормоз образует самотормозящий двигатель, приводной узел, отвечающий требованиям с точки зрения безопасности пользования и позиционирования привода.

Схема устройства

Ниже представлена схема устройства электродвигателя с тормозом.

1. Винт крепления подшипникового щита
2. Подшипниковый щит передний
3. Подшипник передний
4. Крышка коробки выводов
5. Винт крепления крышки
6. Прокладка

7. Клеммная колодка
8. Станина
9. Шпонка
10. Ротор с валом
11. Электромагнитный тормоз
12. Подшипник задний

13. Кольцо пружинное
14. Щит подшипниковый задний
15. Вентилятор
16. Кожух вентилятора

Существуют два варианта электродвигателей с электромагнитным тормозом в зависимости от подводимого питания:

1. питаемые переменным током, для возбуждения электромагнита подводится переменный ток;

2. питаемые постоянным током, для возбуждения электромагнита подводится постоянный ток, выпрямленный выпрямителем, поставляемым вместе с электродвигателем согласно требованиям, уточненным получателем.

Изготавливаем электродвигатели с электромагнитным тормозом следующих исполнений:

  1. Любого монтажного исполнения IM1081, IM2081, IM3081, IM3681, IM2181 и др.;
  2. С ручным растормаживающим устройством (Е2);
  3. С повышенным скольжением (С);
  4. Климатического исполнения (У, УХЛ, Т) по согласованию с заказчиком;
  5. Со встроенной температурной защитой (Б);
  6. Со степенью защиты IP54 (по согласованию с заказчиком IP55);
  7. Различного напряжения питания непосредственно тормозного устройства;
  8. Повышенного либо пониженного тормозного момента по согласованию с Заказчиком;
  9. Независимого питания тормоза от питания двигателя (используется для частотно-регулируемых электроприводов и др.) В базовом исполнении комплектуется 1 м кабелем;
  10. Экспортные (серия AIS, 6А и др.) соответствующие европейским нормам CENELEC – документ 28/64 и стандартам DIN42673, DIN42677 по установочно-присоединительным размерам;
  11. С двумя концами вала исполнения IM1082, IM2082, IM3082, IM3682, IM2182, и др.
  12. С вентилятором принудительного охлаждения;
  13. С датчиком обратной связи по скорости/положению (энкодер,резольвер)
  14. и др.

Конструкция и принцип действия

Электромагнитные тормоза электродвигателей представляют собой компактную конструкцию, состоящую из трех главных подузлов:

  • электромагнит, представляющий собой корпус с размещенной в нем катушкой или набором катушек,
  • якорь, являющийся исполнительным элементом, представляет собой антифрикционную поверхность для тормозного диска,
  • тормозной диск, перемещающийся по зубчатой втулке, закрепленной на валу двигателя или заторможенного привода, представляет собой рабочую часть тормоза, тормозные диски изготавливаются с фрикционными накладками безасбестными.

В состоянии покоя электродвигатель является заторможенным, нажим пружин на якорь, который в свою очередь оказывает нажим на тормозной диск, вызывает блокировку тормозного диска, и создает принятый тормозной момент.

Отпуск тормоза происходит посредством подачи напряжения к катушке электромагнита и притягивания якоря возбужденным электромагнитом. Ликвидированный таким образом нажим якоря на тормозной диск вызывает его отпуск и свободное вращение с валом электрического двигателя или совместно работающего с тормозом устройства.

Возможным является оснащение тормозов рычагом для ручного отпуска, обеспечивающего переключение привода в случае исчезновения напряжения, необходимого для отпуска тормозов.

Основные примеры применения

  • блокировка механизмов и противодействие крутящему моменту, созданному этими механизмами в момент исчезновения напряжения питания (электрическая таль, подъемные краны, складские укладочные машины, транспортные лифты, стреловые краны);
  • остановка движущихся механизмов в определенное время или в определенном положении (конвеерные ставы, транспортные пути, намоточные станки, ткацкие станки, задвижки, прессовальные машины, прокатное оборудование);
  • сокращение к требуемому минимуму времени выбега при циклической работе (быстроходные станки, станки для дерева и металлов);
  • аварийное торможение с целью предотвращения несчастных случаев (эскалатор, мешалки, оборудование действующее в автоматическом цикле);
  • применяются везде там, где требуется остановка приводной системы в определенном положении или времени.

Маркировка двигателей для заказа

Двигатели с электромагнитным тормозом маркируются буквой «Е» либо «Е2» (с ручным растормаживанием) в обозначении двигателя после указания:

· серии (АИР, АИРМ, 5АМ, 6АМ, AIS и др.);

· габарита (высоты оси вращения в мм);

· варианта установочных размеров по длине станины (S, M, L, N) либо по длине сердечника (А, В, С);

Например: АИР100L6ЕУ3 , где У3 – климатическое исполнение.

Основные параметры необходимые для заказа электродвигателей с электромагнитным тормозом следующие:

3. Скорость вращения, об/мин;

4. Монтажное исполнение, IM…;

5. Климатическое исполнение, У, УХЛ, Т и др.;

6. Высота оси вращения, мм;

7. Номинальное напряжение, В;

8. Специальные дополнительные требования, предъявляемые:

  • к электродвигателям;
  • к тормозам (например, тормозной момент, габаритные размеры и пр.).

Заявки высылать на электронную почту info @ sopteh . ru

Двигатели с тормозом

Электродвигатели самотормозящие трехфазные, однофазные, многоскоростные снабжены дисковым тормозом без аксиального движения ротора двигателя для эксплуатации без смазки с постоянным крутящим моментом в двух направлениях вращения, питается от постоянного или переменного тока, предназначены для привода механизмов, где по условиям технологического процесса требуется быстрая остановка после отключения питания.

Читайте также:  Чем резать бетон с арматурой?

Двигатели с тормозом необходимо также во всех случаях, когда требуется точность и повторяемость остановки привода. Их необходимо использовать во всех приводах с высокой линейной скоростью во избежание поломок оборудования после отключения двигатели при движении по инерции

Использование механического торможения вместо электрического выгодно тем, что тепло выделяемое в процессе торможения рассеивается не двигателем, а тормозным устройством, поэтому двигатель нагревается меньше и частота циклов может быть повышена.
Тормозное устройство распологается со стороны, противоположной выступающему кольцу вала, и осуществляет быстрое торможение при отключении питания.
При подаче напряжения на двигатель происходит его растормаживание. Тормозная система приводится в действие магнитом постоянного тока, который питается от сети через выпрямитель.
В двигателях с высотой оси вращения 160 мм. и более для ускорения растормаживания применяется форсирование усилия путем введения дополнительного напряжения пропорционального пусковому току.

Асинхронные трехфазные двигатели с тормозом

Закрытого исполнения
Принудительная вентиляция
С короткозамкнутым ротором
2,4,6,8 полюсов
Степень защиты электродвигателя IP55
Степень защиты тормоза IP44,IP55, по запросу
Типоразмер электродвигателя МА56-МА160

Асинхронные однофазные электродвигатели с тормозом

С конденсатором
Закрытого исполнения
2,4,6 полюсов
Принудительная вентиляция, с короткозамкнутым ротором
Степень защиты электродвигателя IP55
Степень защиты тормоза IP44, IP55 по запросу
Типоразмер электродвигателя MMA56-MMA100

Асинхронные однофазные электродвигатели с встроенным электронным реле с тормозом

С конденсатором, с электронным реле
Ручка ручного растормаживания
Закрытого исполнения, принудительная вентиляция
С короткозамкнутым ротором
Степень защиты электродвигателя IP55
Степень защиты тормоза IP44; IP55 по запросу
Типоразмер электродвигателя MADE63-MADE100
4,6 полюсов

Асинхронные трехфазные многоскоростные электродвигатели с тормозом

Закрытого исполнения
Принудительная вентиляция
С короткозамкнутым ротором
С ручкой ручного растормаживания
Степень защиты электродвигателя IP 55
Степень защиты тормоза IP 44, IP 55 по запросу
Типоразмер электродвигателя MADP63-MADP160
2/4, 4/6, 4/8, 2/6, 2/8, 6/8, 2/12 полюсов

Асинхронные однофазные электродвигатели с центробежным выключателем с реле выключения подачи напряжения с тормозом

С конденсатором, закрытого исполнения
Принудительная вентиляция, с короткозамкнутым ротором,
Может быть снабжен ручкой ручного растормаживания
Серия MADV с реле выключения подачи напряжения
Серия MADC с центробежным выключателем
Степень защиты электродвигателя MADV-MADC IP 55
Степень защиты тормоза IP 44, IP 55 по запросу

Типоразмер электродвигателя от MADV63-MADV-100, MADC71-MADC100
2, 4, 6 полюсов

Таблица тормозов с питанием от постоянного тока
[Нм]М56М63М71М80М90М100М112М132М160
Уменьшенный крутящий момент1226102050701302,5 x Тном
Номинальный крутящий момент1,84481635751001802 х Тном
Увеличенный крутящий момент366122250951202001,5 х Тном

Тном – номинальный воздушный зазор

Таблица промежуточных зазоров в тормозах с питанием от постоянного тока
[Нм]М56М63М71М80М90М100М112М132М160
Номинальный воздушный зазор0,150,20,20,20,20,250,250,30,3

Тормоз с питанием от постоянного тока

Постоянным током тормоз может питаться напрямую от фазы электродвигателя, а также – отдельно. Переменный ток выпрямляется с помощью двухполупериодного выпрямителя, который располагается внутри клеммной панели. Коробка с выпрямителем сделана из ABS, его элементы залиты эпоксидной смолой. ПОдача напряжения: 205В. По запросу возможно различное напряжение. ЛЮбые тормоза подвержены износу, поэтому необходимо проводить регулярное техническое обслуживание. Рекомендуется делать это раз в полгода. Период проверки отличается в зависимости от эксплуатации.

Ручка ручного растормаживания

Механическая рукоятка ручного растормаживания работает путем движения в сторону задней части электродвигателя (сторона вентилятора). Типоразмеры электродвигателя от М63 до М90 с тормозом имеют стандартную комплектацию ручным растормаживанием со стороны клеммной коробки. Для всех остальных – комплектуется по запросу, требуется как правило для электродвигателей специального исполнения.

Тормозной момент

Самотормозящийся двигатель комплектуется тормозом, проверенном при тормозном моменте примерно на 20% меньше, чем при опытном испытании. По запросу тормозной момент может быть увеличен или уменьшен. При заказе электродвигателей с регулятором частоты, необходимо уточнить крутящий момент тормоза.

Тормоз DC с обратным подключением (по требованию)

Стандартный тормоз работает следующим образом: при отсутсвии подачи питания электродвигатель заторможен. По запросу возможна установка обратного тормоза: торможение осуществляется, когда на катушку тормоза подается питание.

Повышенные степени защиты тормоза По запросу возможны две дополнительные степени защиты Первый уровень IP54 включает в себя кольцо, которое защищает от пыли. Рекомендован для пыльных или слегка влажных условий эксплуатации. Второй уровень IP55 использует дополнительное кольцо из нержавеющей стали совместно с кольцом, защищающим от пыли. Рекомендуется применять в условиях высокой влажности или маслосодержащей среде (Например в пищевом оборудовании, автомобилях)

Электродвигатель с электромагнитным тормозом

Электродвигатель со встроенным электромагнитным тормозом ЭМТ – модификация стандартного электродвигателя АИР. Комплектуется специальным устройством, мгновенно замедляющим вращение вала электродвигателя. Расположен электротормоз между задним подшипниковым щитом и вентилятором.

У нас можно купить двигатели со встроенным электротормозом, установить ЭМТ на ваш электродвигатель АИР, 4АМ, 5АМ, 4АМУ или заказать мотор-редуктор с электромагнитным тормозом.
Заказать электродвигатель с тормозом

Электромагнитный тормоз для электродвигателя

Электромагнитный тормоз устанавливается в двигатели конвейеров, станков, талей, кран-балок, эскалаторов и тд. Основная задача – остановка привода в нужном положении или определенном времени.

Электромагнитный тормоза по устройству и конструкции классифицируются по:

  • Типу тока — постоянного тока, переменного тока;
  • Типу питания — зависимым или независимым питанием;
  • Наличию ручного управления — с растормаживающим устройством или без.

Принцип работы и регулировка

Принцип работы заключается в затормаживании вала ротора с помощью тормозного диска. В состоянии бездействия, электродвигатель находится в заторможенном состоянии. Тормозной момент создается за счет нажима пружин на якорь, который в свою очередь прижимает тормозной диск и блокирует его. При подаче напряжения на катушки электромагнита якорь притягивается, обеспечивает свободное вращение вала электродвигателя.

Регулировка электромагнитного тормоза выполняется регулировочной гайкой, которая изменяет усилия нажатия пружин на якорь тормоза, тем самым регулируя тормозной момент.

Устройство ЭМТ

По конструкции электромагнитные тормоза различаются по типу тока — постоянные и переменного тока.

Устройство встроенного электромагнитного тормоза электродвигателя (далее ЭМТ) изображено на чертеже.

1-якорь, 2-нажимные пружины, 3-ротор, 4-втулка, 5-вал, 6-штифт., 7-корпус эл. магнита, 8-катушка тормоза, 9-втулочные винты, 10-фрикционные кольца, 11-шпонка, 12-стопор, δ – воздушный зазор.

Электромагнитный дисковый тормоз переменного тока

Электромагнитные дисковые тормоза переменного тока наиболее распространенные. Обладают простой конструкцией и легкостью в производстве – не используется дополнительное оборудование для выпрямления тока. В сравнении с постоянным током, менее надежные и требуют постоянной регулировки. Подключается к трехфазным электросетям с напряжением 380 и 220 В. Не предназначены для тяжелых режимов работы, используются при отсутствии потребности в частых включениях. При торможении возникают большие динамические усилия, которые сопровождаются толчками и ударами.

Электротормоз постоянного тока

Встроенные электромагнитные тормоза постоянного тока, обладают высокими энергетическими показателями, надежны, экономичны и лишены недостатков переменного тока. Для преобразования напряжения, в конструкции ЭМТ постоянного тока предусмотрен выпрямитель – отображается на стоимости конструкции. Торможение происходит плавно – электромагнитные тормоза не подвергаются высокому износу.

Купить электродвигатель АИР с тормозом

Системы качества предлагают купить электродвигатели АИР с встроенным электромагнитным тормозом производства Украины, Белоруссии, Китая. Также, предлагаем услуги установки электротормоза на ваши моторы, мотор-редукторы. Для актуализации цены двигателя с тормозом или просчета стоимости установки ЭМТ на ваш электропривод — свяжитесь менеджером!

Читайте также:  Промышленное холодильное оборудование: ремонт и монтаж

При покупке асинхронного двигателя с электромагнитным тормозом с независимым питание — указывайте вольтаж подводимого напряжения.

Габаритно-присоединительные размеры электродвигателей с электромагнитным тормозом

Присоединительные размеры не меняются при комплектации двигателя тормозом, габариты меняются. У электромоторов с тормозом габариты отличаются от обычных двигателей длиной (L30)

Длина АИР 71, 80, 90

(Сравнение электродвигателей с электромагнитным тормозом и без него)

Длина L30, ммМасса, кгДлина L30, ммМасса, кг
ДвигательС эмтБез эмтС ЭМТБез эмтДвигательС эмтБез эмтС ЭМТБез эмт
АИР 71А2330270128.7АИР 80В237632118.115
АИР 71В4149.4АИР 80В417.213.8
АИР 71В29.5АИР 80В618.715.3
АИР 71А4128.1АИР 80В818.414.8
АИР 80А235229715.812.4АИР 90L239233724.119
АИР 80А415.211.9АИР 90L422.918.1
АИР 80А615.111.6АИР 90L623.719
АИР 80А816.712.8АИР 90LA822.117.7
АИР 90LB825.120.5

Длина АИР 100, 112, 132

(Сравнение электродвигателей с электромагнитным тормозом и без него)

Длина L30, ммМасса, кгДлина L30, ммМасса, кг
ДвигательСБезСБезДвигательСБезСБез
АИР 100S442439030.923АИР 112МА85684434533.4
АИР 100L44443729.2АИР 112МВ850.539
АИР 100L63527АИР 132M25935467460.4
АИР 100L834.724АИР 132S45554837553.5
АИР 112М25684434540АИР 132M45938566.3
АИР 112М46738.5АИР 132S65557152.3
АИР 112МА647.533.4АИР 132M65938864.5
АИР 112МВ65238.8АИР 132S85555466352.2
АИР 132M85938862.2

Длина АИР 160, 180

(Сравнение электродвигателей с электромагнитным тормозом и без него)

Способы и схемы торможения электродвигателей

Торможение электродвигателя применяют, если необходимо сократить время свободного выбега и фиксацию механизма в конкретном положении. Существует несколько видов принудительной остановки устройства. Это механическое, электрическое и комбинированное. Механическое устройство представляет собой тормозной шкив, закрепленный на валу, с колодками. После отключения устройства колодки прижимаются к шкиву. За счет трения кинетическая энергия преобразуется в тепловую, т.е. происходит процесс торможения. Остальные способы и схемы торможения электрического двигателя будут рассмотрены далее в статье.

Способы электрического торможения электроприводов

Для того чтобы быстро остановить устройство или обеспечить постоянную скорость вращения используют электрические способы остановки. В зависимости от схемы включения тормозные режимы подразделяют на:

  • противовключения;
  • динамический;
  • рекуперативный.

Противовключения

Режим противовключения применяется при необходимости быстрой остановки механизма. Представляет собой смену полярности на обмотке якоря двигателя постоянного тока или переключения двух фаз на обмотках асинхронного электродвигателя.

В этом случае ротор вращается в противоположном направлении магнитного поля статора. Вращение ротора замедляется. При скорости вращения близкой к нулю с реле контроля скорости поступает сигнал, отключая механизм от сети.

На нижеприведенном рисунке представлена схема противовключения асинхронного электромотора.

После переключения обмоток возникает повышенное действующее напряжение и увеличение тока. Для его ограничения, в обмотки ротора или статора устанавливают дополнительные резисторы. Они ограничивают токи в обмотках в режиме торможения.

Динамическая остановка электропривода

Этот способ применяют на асинхронных машинах, подключенных к сети переменного тока. Он заключается в отключении обмоток от сети переменного напряжения и подачи постоянного тока на обмотку статора.

На вышеприведенном рисунке представлена схема торможения трехфазного двигателя постоянным током.

Подача постоянного напряжения осуществляется с помощью понижающего трансформатора для динамического торможения. Пониженное переменное напряжение преобразуется в постоянное диодным мостом и подается на статорную обмотку. Для торможения электромотора может применяться дополнительный источник постоянного тока.

При этом ротор может быть выполнен в виде «беличьей клетки» или ее обмотку подключают к добавочным резисторам.

Постоянное напряжение создает неподвижный магнитный поток. При вращении ротора в нем наводится ЭДС, т.е. электромотор переходит в режим генератора. Возникающая электродвижущая сила рассевается на обмотке ротора и добавочных резисторах. Создается тормозной момент. В момент остановки механизма постоянное напряжение отключается по сигналу реле скорости.

Механизмы, где применяется электродвигатель с самовозбуждением, динамическую остановку выполняют с помощью подключения конденсаторов. Они соединяются треугольником или звездой.

Схема приведена на нижеприведенном рисунке.

На выбеге остаточная энергия магнитного поля переходит в заряд конденсаторов, а затем она питает обмотку статора. Возникающий тормозной эффект останавливает механизм. Конденсаторная батарея может быть подключена постоянно или подсоединяться в момент отключения от сети. Такая схема получила название «конденсаторное торможение асинхронного двигателя».

Если необходимо быстро остановить двигатель, то после отключения от сети, замыкают контакты накоротко без гасящих резисторов. При соединении обмоток закорачиванием в них возникают большие токи. Для уменьшения токов к обмоткам подключают токоограничивающие резисторы.

На нижеприведенном рисунке представлена схема с токоограничивающими резисторами.

Режимы торможения моторов постоянного тока

Динамическое торможение электродвигателя постоянного тока осуществляется после отключения его от сети с замыканием обмотки ротора на тормозной реостат. Выделенная электрическая энергия рассеивается на реостате.

На вышеприведенном рисунке представлены схемы реостатного торможения двигателя постоянного тока.

Рекуперативное торможение электрических машин

Рекуперативное торможение электродвигателя характеризуется переводом двигателя в генераторный режим. При этом вырабатываемая электроэнергия возвращается в сеть или используется для подзарядки аккумулятора.

Этот режим широко применяется в электровозах, электричках, трамваях и троллейбусах. В момент торможения, вырабатываемая электроэнергия возвращается в электрическую сеть.

Режим рекуперативного торможения применяется для подзарядки аккумуляторов в гибридных автомобилях, электромобилях, электросамокатах, электровелосипедах.

Этот режим является наиболее экономичным и возможен при условии: если частота вращения ротора превышает частоту вращения холостого хода. Это условие выполняется, когда ЭДС электродвигателя превышает напряжение питающей сети. А ток якоря и магнитный поток меняют свое направление. Электрическая машина переходит в генераторный режим, возникает момент торможения.

На рисунке представлена схема торможения тягового двигателя а) с независимым возбуждением и стабилизирующим сопротивлением, б) с противовозбуждением возбудителя.

Режим рекуперации в асинхронных электрических машинах

Режим рекуперации применяется не только в двигателях постоянного тока. Его можно применять и в асинхронных двигателях.

При этом такой режим возможен в следующих случаях:

  1. Если изменить частоту питающего напряжения при помощи частотного преобразователя. Что возможно при условии питания асинхронного электродвигателя от устройства с возможностью регулирования частоты питающей сети. Эффект торможения наступает при уменьшении частоты питающего напряжения. При этом переход в генераторный режим происходит, когда скорость вращения ротора становится больше номинальной (синхронной).
  2. Асинхронные машины, которые конструктивно имеют возможность переключения обмоток, для изменения скорости.
  3. В грузоподъёмных механизмах, где применяется силовой спуск. В них монтируется электромотор с фазным ротором. В этом случае скорость регулируется с помощью изменения величины резистора, подсоединяемого к обмоткам ротора. Магнитный поток начинает обгонять поле статора, а скольжение становится больше 1. Электромотор переходит в режим генератора, вырабатываемая электроэнергия возвращается в сеть, возникает тормозной эффект.

Комбинированный режим

Комбинированные тормозные режимы применяются в электрических машинах, если необходимо быстро остановить и зафиксировать механизм. Для этого используют механический блок торможения в комбинации с электрическим торможением. Комбинация может быть различной. Это может быть и электрическая схема с противовключением, динамическим и рекуперативным режимами.

Вот мы и рассмотрели основные способы и схемы торможения электродвигателей. Если возникнут вопросы, задавайте их в комментариях под статьей!

Ссылка на основную публикацию