Преобразователь частоты — что это такое?

Что такое преобразователь частоты и для чего он нужен

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Для чего нужен преобразователь частоты — задачи и преимущества частотника

    1 commentПринцип работы Декабрь 15, 2016

Частотные преобразователи – это технические устройства, преобразующие входные сетевые параметры в выходные на различных частотах. Современные инверторы переменного тока обладают широким частотным диапазоном.

Асинхронный преобразователь частоты предназначен для преобразования сетевого 3-х либо 1-но фазного переменного тока f 50 Гц в 3-х фазный либо 1-но фазный, f 1 ̴̴ 800 Гц.

Производителями выпускаются электро-индукционные частотники, представляющие собой конструктив:

  • асинхронный электродвигатель;
  • инверторы.

Частотники зачастую используются для плавной регулировки скорости вращения асинхронного двигателя (АД) за счет формирования на выходе частотника заданных параметров сети. В самых простых случаях регулировка f и U выполняется с соответствующей зависимостью V/f, в более навороченных инверторах реализуется как векторное управление.

Электронный преобразователь частоты — это конструктив, который состоит из элементов:

  • выпрямитель, преобразующийI ̴в Iconst;
  • инвертор, преобразующийIconstв I ̴с требуемой частотой и амплитудой.

Выходные тиристоры (транзисторы) служат для обеспечения необходимого тока для электроснабжениядвигателя.

Для поправки U вых. между частотником и электродвигателем другой раз ставят дроссель, а для сниженияпомех — фильтр.

Классификация преобразователей частоты

По типу питающего напряжения преобразователи частоты делятся на разновидности:

  • однофазные;
  • трехфазные;
  • высоковольтные аппараты.

Основную задачу преобразователя частоты можно сформулировать следующим образом: перевод рабочего процесса на экономичный режим с помощью управления скоростью и моментом двигателя, согласно заданным техническим параметрам и характеру нагрузки.

При этом цифровой дисплейприбора показывает такие параметры работы системы, как:

  • величина I и U двигателя;
  • выходные значения частоты, скорости, мощности и момента (f, v, Р и М);
  • отображение состояния дискретных входовдля регулирования скорости вращения вала АД и дистанционного управления системой;
  • продолжительность работы самого частотного преобразователя.

По сфере использования типы инверторы бывают:

  • промышленного назначения мощностью до 315 кВт;
  • ПЧ с векторным управлением мощностью до 500 кВт;
  • для управления механизмами с насосно-вентиляторным типом нагрузки (Р 15 — 315 кВт);
  • частотники для кранов и других подъемных конструкций;
  • для применения в условиях взрывоопасности;
  • устанавливаемые ЧРП прямо на электродвигатель.

Структура частотного преобразователя

Структура современного ПЧ выстраивается по принципу преобразования энергии и включает в себя силовую и управляющую составляющую. Первая, как правило, исполняется на тиристорах или транзисторах, коим отводится роль электроключей. Управляющий блок реализуется на микропроцессорах. С помощью ключей размыкающий и замыкающий цепи он позволяет молниеносно решать множество заданий по диагностике, защите, контролю.

По принципу работы частотные преобразователи бывают двух типов:

  1. с наличием промежуточного звена постоянного тока;
  2. с непосредственной связью.

Всем им присуще ряд достоинств и недостатков, обуславливающих сферу эффективного использования каждого из них.

Непосредственные частотные преобразователи

Они принадлежат к наиболее ранним аппаратам с упрощенной силовой частью,представляющей собой выпрямитель на тиристорах.

Система управления по очереди отмыкает групповые тиристоры и подключает обмотки электродвигателя к сети питания. Непосредственные – это реверсивный тиристорный частотник. Основное его преимущество заключается в том, что он подключается напрямую в сеть без добавочных устройств.

Таким манером получается, что U вых частотника образуется из усеченных отрезков синусоид U вых. На рисунке приведён пример сформировавшегося U вых для одной из фаз нагрузки. На вход тиристоров подаётся 3-х фазное синусоидальные составляющие Uа, Uв, Uс. Напряжение U вых представляется несинусоидальной «пилообразной» формой, которая в аппроксимированном виде выглядит как синусоида (жирная кривая). На чертеже показано, что частота U вых не может быть равной либо превышать частоту сети питания. Поэтому и невелик диапазон управления частоты вращения электродвигателя (менее 1: 10). Ограничивающие пределы не дают возможность использовать подобные частотные преобразователи в навороченных ЧРП. Последние рассчитаны на широкий диапазон регулировкипоказателей.

Применение тиристоров в большей степени усложняет систему управления, и поэтому этого стоимость преобразователя частоты увеличивается.

Выходная «усеченная» синусоида частотника – это источник высокочастотных гармоник, вызывающих добавочные потери в электродвигателе, перегревание электромашины, уменьшение момента, мешающие работе шумы в сети питания. Использование компенсирующих приспособлений повышает цену, массу, размеры, понижает КПД всей системы.

Тем не менее, непосредственные частотные преобразователи радуют пользователей своими определёнными достоинствами. К ним относятся:

  • достаточно большой КПД, достигаемый одним преобразованием электроэнергии;
  • работа в различных режимах, включая с рекуперацией энергии в сеть;
  • надежность, относительная дешевизна, полная управляемость и удобство;
  • наличие возможности неограниченного наращивания мощности системы;

Такие схемы применяются в электроприводах выпуска прошлых лет. В новых конструкциях они на практике не разрабатываются.

Частотные преобразователи со звеном постоянного тока

Это устройства, выполненные по транзисторной или тиристорной схеме. Однако их основная отличительная особенность состоит в том, что корректная и безопасная работа частотника требует наличия звена постоянного напряжения. Поэтому для подключения их к промышленной сети требуется выпрямитель. Обычно, применяются комплектное оборудование, состоящее из частотного преобразователя и выпрямителя, регулируемые от одной системы управления.

Читайте также:  Как происходит изготовление днищ и обечаек?

В ПЧ этой группы применяется двухступенчатое преобразование электроэнергии: синусоидальное U вх с f = const выправляется в выпрямителе (В), отфильтровывается фильтром (Ф), разглаживается, и далее заново преобразуется инвертором (И) в U ̴. Ввиду двухступенчатого преобразования электроэнергии снижается КПД и несколько ухудшаются массогабаритные показателив сравнении с преобразователями частоты с непосредственной связью.

Для создания синусоидального U ̴ самоуправляющиеся преобразователи частоты. В качестве ключевой базы в них используются усовершенствованная тиристорная и транзисторная основа.

Основным преимуществом тиристорной преобразовательной аппаратуры считается возможность оперироватьс большими параметрами сети, с выдерживанием при этом продолжительной нагрузки и импульсных воздействий. Аппараты обладают более высоким КПД.

Частотные преобразователи на тиристорах на сегодня превосходят остальные высоковольтные приводы, мощность которых исчисляется десятками МВТ с U вых от 3до 10 кВ и более. Однако и цена на них соответственно наибольшая.

  • наибольший КПД;
  • возможность использования в мощных приводах;
  • приемлемая стоимость, невзирая на внедрение добавочных элементов.

Принцип действия преобразователя частоты

Первооснову привода определяет инвертор двойного преобразования. Принцип действия заключается в том, чтобы:

  • входной переменный токсинусоидального типа 380 либо 220В выпрямляется блоком диодов;
  • потом фильтруется посредством конденсаторов для минимизации пульсации напряжения;
  • дальше напряжение подаётся на микросхемы и мосты транзисторов, создающие из него 3-х фазную волнус установленными параметрами;
  • на выходе прямоугольные импульсы превращаются в синусоидальное напряжение.

Как подключить и настроить преобразователь частоты?

Общая схема подключения асинхронного электродвигателя с применением частотного преобразователя в принципе не сложная, так как вся основная разводка заключается в корпусах приборов. Для технаря, владеющего практикой, разобраться в ней не составит сложности. В схеме место для преобразователя выделяется сразу после автоматического выключателя с номинальным током, равным номиналу электрического двигателя. При монтаже преобразователя в 3-х фазную сеть необходимо задействовать трехполюсный автомат,имеющий общий рычаг. При перегрузке это позволит мгновенно отключить все фазы от сети электроснабжения. Ток срабатывания должен быть равным току одной фазы электродвигателя. При однофазном питании, следует выбирать автоматический выключатель, с утроенным значением тока одной фазы.

Во всех случаях, монтаж инвертора должен осуществляться с включением автоматических выключателей в разрыв нулевого или заземляющего провода.

Практически настраивать частотный преобразователь – это значит, проводить подключение жил кабеля к видимым контактам электрического двигателя. Конкретное соединение определено характером напряжения, вырабатываемого непосредственно преобразователем частоты. Для 3-х фазных сетей на промышленных объектах электродвигатель подсоединяется «звездой» — этой схемой подразумевается параллельное подсоединение проводов обмоток. Для бытового применения в однофазных сетях применяется схема «треугольник» (где U вых не превышает U ном больше чем на 50%).

Пульт управления необходимо располагать втам, где будет комфортно пользоваться. Схема подключения пульта обычно отображена в пользовательской инструкции к частотному преобразователю. Перед установкой, до подачи электропитания рычаг нужно перевести в положение «выключено». После того должна загореться соответствующая индикаторная лампочка. По умолчанию для пуска аппарата требуется нажать на клавишу «RUN». Для плавного наращивания оборотов электродвигателя нужно не торопясь повернуть рукоятку пульта. При обратном вращении необходимо переустановить режим посредством кнопки реверса. Сейчас уже можнобудет перевести рукоятку в рабочее положение и установить требуемую скорость вращения. Стоит заметить, что на управляющих пультах отдельных ПЧ указывается не механическая частота вращения, а частота питающего напряжения.

Ради чего нужен преобразователь частоты?

Применение задвижек и регулирующих клапанов в производстве постепенно уходит в прошлое. Пришедшие им на замену асинхронные двигатели выгодно отличаются высокой производительностью и мощностью, но также не лишены характерных недостатков. К примеру, контроль над скоростью вращения ротора требует оснащения добавочными элементами. Пусковые токи превышают номинальные до семи раз. Такая ударная перегрузка отражается на сроке службы агрегата.

Высокоэкономичное функционирование насосов основывается на постоянной регулировке таких технических показателей как температура, давление и расход воды. Оптимизация работы дымососов и вентиляторов требует регулировки температурного режима, давления воздуха и разреженности газов. Экономичность использования станков предусматривается регулировкой скорости вращения двигателя. В конвейерной специфике работы важной особенностью является производительность. Специальные частотные агрегаты предназначены для решения подобных задач.

Для фирмы и предприятий частные преобразователи необходимы в плане:

  • экономии энергетических ресурсов;
  • долгосрочности службы механической и электрической части технологического оборудования;
  • уменьшения денежных затрат на плановые ремонтно-предупредительные процедуры;
  • ведения оперативного управления, принципиального контроля за техническими параметрами и т. п.

Использование частотного привода повышает техническую эффективность производства еще и за счёт высвобождения некоторого оборудования.

Где используются частотные преобразователи?

Аппаратура широко применяется в промышленных и устройствах, где необходимо изменение скорости вращения двигателя, мероприятия по борьбе с амплитудными пусковыми токами или корректирование в регулирующих деталях (комбинации элементарных преобразователей с использованием обратной связи) и т. п. Рассмотрим их применение по мере востребованности:

Насосы. Поскольку потребляется мощность, пропорциональна, как известно, кубу скорости вращения, то использование преобразователя частоты позволяет сэкономитьпотребление электроэнергии до 60 %, в сравнении с методом регулировки мощности посредством заслонок на трубе. Годовое использование частотного преобразователя окупает все затраты на его приобретение. Аппараты позволяют также:

  • снижать тепловые и водные потери на 5 — 10 %,
  • уменьшать количество аварий на трубопроводах;
  • обеспечить полноценную защиту электрического двигателя.

Дополнительным преимуществом является решение проблемы с гидроударами: работающие ПЧ сглаживают пуск/останов насоса. На модернизированных насосных станциях налажены системы, позволяющие управлять насосами групповым методом без необходимости в установке контроллера.

Вентиляторы. Все, вышесказанное для насосов, в полной мере имеет отношение и к вентиляторам. Что касается экономии потребления электричества, она здесь еще более значительна, так как в целях прямого пуска больших вентиляторов зачастую используются более мощные двигательные агрегаты. Усовершенствование технологических установок приводит к повышению рентабельности производства. Экономичность достигается и за счёт уменьшения потерь холостого хода.

Транспортеры. Адаптация скорости перемещения к скорости технологической системы, не являющейся постоянной величиной. Плавный запуск значительно увеличивает ресурс механической части системы, так как ударные нагрузки наносят вред техническому оборудованию.

Область использования преобразователей частоты довольно обширна. Среди управляемых инверторов насосного типа небольшой мощности можно выделить также центробежные насосы, компрессоры, центрифуги, воздуходувки и т. д.

К общепромышленной серии управляемых ЧРП частотников средней мощности относятся двигатели в вентиляторах, дымососах, в системах водоснабжения, смесителях, дозаторах, производственных линиях.

Трудно представить без векторного управления с помощью преобразователей лифтовое и другое подъемно-транспортное оборудование со значительными перегрузками при пуске/остановке.

Использование ПЧ с обратной связью позволяет обеспечить точность скорости вращения, что станет залогом улучшения качества технологического процесса и решения поставленных задач. Известные производители имеют ряд моделей, ориентированных на рабочий режим в замкнутой системе. Техника рекомендована к использованию в деревообрабатывающей промышленности, робототехнике, системах точного позиционирования и др.

Вся перечисленная техника может управляться с помощью преобразователей с аналогово-цифровыми входами/выходами для регулирования, дистанционным контролем и мониторингомпо последовательной линии связи.

Другие преимущества частотников:

  • плавное регулирование скорости вращения двигателя даёт возможность не применять редукторы, вариаторы, дроссели и другую регулирующую аппаратуру, что делает структуру управления проще, дешевле и существенно надёжнее;
  • частотники в составе с АД могут вполне использоваться для замены электроприводов постоянного тока;
  • возможно создание многофункциональных систем управления приводами на базе ПЧ с контроллером;
  • модернизация технологического конструктива может производиться без перерыва в работе.

Заключение

Стоит отметить, что в отдельных случаях применение современного управления производством с помощью частотных преобразователей приводит к снижению не только энергоресурсов, но и потерь транспортируемых веществ. В промышленно-развитых странах уже практически невозможно найти асинхронный электродвигатель без преобразователя частоты.

Мы примерно знаем, как на сегодня обстоят дела у нас, а вот что ждёт нас в будущем? Глядя на ситуацию сквозь призму пользователя, предполагается деление преобразователей частоты на две части: первая будет содержать технику, ориентированную на пользовательского дилетанта и имеющую минимальное количество настроек и максимум автоматических, а во вторую – приборы, имеющие максимальное количество настроек с большими возможностями и рассчитанные на применение специалистами, способными все эти возможности использовать.

Частотные преобразователи

Ремонт.

Назначение.

Преобразователи частоты представляют собой устройства силовой промышленной электроники и предназначены для преобразования однофазного или трехфазного напряжения сети переменного тока постоянной частоты в трехфазное напряжение регулируемой частоты. Возможность регулирования частоты выходного напряжения позволяет применять частотные преобразователи для изменения скорости вращения электродвигателей, одновременно обеспечивая умную защиту подключенной нагрузки. Кроме основной защиты от перегрузки по току, большая часть современных преобразователей частоты оснащена функциями защиты от понижения напряжения источника питания (защита ЗМН), перенапряжения, однофазного короткого замыкания на землю и других неисправностей. Наличие этих опций значительно увеличивает срок безаварийной эксплуатации электродвигателей. Регулирование частоты осуществляется по закону V/f или используется векторное управление. Системы под управлением частотных преобразователей обладают высоким коэффициентом полезного действия. За счет этого, а также благодаря возможности динамического изменения скорости вращения электродвигателя в зависимости от входных сигналов с датчиков или по заданной оператором программе, применение частотных преобразователей дает возможность снизить затраты на потребляемую электроэнергию до 30%. Окупаемость использования систем управления с преобразователями частоты в среднем достигается в первые 1-2 года после внедрения.

Устройство.

Частотный преобразователь состоит из нескольких основных электронных узлов.

  1. Однофазный или трехфазный выпрямительный мост на основе диодов, тиристоров соединенных чаще всего по схеме Ларионова для трехфазных цепей.
  2. ЭМС фильтр содержит дроссель на ферритовом сердечнике и неполярные конденсаторы.
  3. Емкостная часть цепи постоянного тока состоит из сборки конденсаторов включенных последовательно для увеличения общего номинального напряжения и параллельно для увеличения общей емкости.
  4. Схема управления собрана на основе микропроцессора, драйвера, опторазвязки.
  5. Источник питания чаще всего состоит из многоканального импульсного блока питания с выходными каналами +5В, +12В, -12В, +24В. В редких случаях используются источники питания на основе низкочастотных понижающих трансформаторов.
  6. Силовая часть частотных преобразователей обычно состоит из шести IGBT транзисторов, объединенных в IGBT модули.
  7. Схема измерения основана на датчиках тока Холла.
  8. Схема ввода-вывода представлена чаще всего в виде отдельной платы с АЦП, ЦАП, оптической развязкой, интерфейсом связи RS-485.
  9. Узел ограничения зарядного тока конденсаторов цепи постоянного тока содержит термистор для устройств небольшой мощности или ограничительный резистор, шунтирующий нормально открытые контакты реле (контактора) для мощных частотных преобразователей.
  10. Цепь торможения – тормозной резистор применяется для динамического торможения электродвигателей средней и большой мощности и может быть как встроенным, так и внешним по отношению к преобразователю частоты.
  11. Система охлаждения может содержать радиатор и вентиляторы.
  12. Панель управления с цифровым дисплеем – может являться как обязательной частью частотного преобразователя, так и независимым устройством для считывания и записи настроек.

Принцип действия.

Выпрямленное напряжение от шины постоянного тока поступает на IGBT транзисторы, которые управляются через оптическую развязку от драйвера ШИМ. На драйвер сигналы управления через схему согласования уровней передаются от микропроцессора, содержащего алгоритм управления. По этому алгоритму происходит управление работой драйвера и далее взаимозависимое открытие-закрытие соответствующих выходных транзисторов. В результате на выходе каждого из трех каналов будут получены сигналы синусоидальной формы со смещением друг относительно друга. Чем выше частота переключения ШИМ – тем больше форма синусоиды близка к идеальной. Наиболее частыми значениями частоты работы ШИМ являются 4 кГц, 8 кГц, 16 кгц. Эти значения могут быть изменены пользователем в процессе подготовки к эксплуатации.

Время выполнения запроса: 0,00230193138123 секунд.

Разновидности преобразователей частоты

Настоящим прорывом в области регулируемого электропривода стало появление силовых преобразователей частоты или как их именуют в профильной среде — частотников. Это открытие кардинально изменило подход в проектировании систем электроприводов. Если относительно недавно при проектировании сложных механизмов, где без точного регулирование параметров (скорость, момент) не обойтись, выбирались двигатели постоянного тока — ДПТ, то с появлением частотников привода переменного тока начали активно вытеснять двигатели постоянного тока из данных систем. Даже в тяговых электроприводах асинхронный двигатель с коротко-замкнутым ротором вытесняет ДПТ последовательного возбуждения.

Классификация преобразователей частоты

Техническое устройство, преобразующее переменное напряжения одной частоты на входе, в изменяющееся по определенному закону переменное напряжение, но уже другой частотой на выходе называется преобразователем частоты (ПЧ). Бывают двух типов:

Непосредственные – это реверсивный тиристорный преобразователь. Главное его достоинство в том, что он подключается напрямую в сеть без дополнительных устройств.

Двухзвенные – представляют собой транзисторный или тиристорный преобразователь. Но главное их отличие от непосредственных преобразователей в том, что для корректной и безопасной работы инвертора необходимо звено постоянного напряжения. Соответственно для подключения их к общепромышленным сетям необходим выпрямитель. Как правило изготавливаются комплектными (инвертор и выпрямитель поставляются вместе и работают от одной системы управления).

Двухзвенные преобразователи частоты

Двухзвенный или как его еще называют со звеном постоянного тока, созданный на базе АИН (автономный инвертор напряжения), содержит в комплекте выпрямитель и фильтр:

ЭМ – электрическая машина, АИН – автономный инвертор напряжения, Lф, Сф – индуктивности и емкости фильтра, fнз – задание частоты выхода инвертора, udз – задание выходного напряжения для выпрямителя, если используются управляемые выпрямители, СУВ, СУИ – системы управления выпрямителем и инвертором соответственно, uнз – задание выходного напряжения инвертора, В – выпрямитель. Пунктиром показаны связи, которые включаются в систему в зависимости от типа устройства.

Читайте также:  Виды высоковольтных изоляторов

Для улучшения качества энергии в звене постоянного напряжения и сглаживании пульсаций напряжения и тока используют L-C фильтр. Зачастую он имеют Г – образную схему включения, как показано выше. Также иногда используют фазовый сдвиг в цепи переменного напряжения путем включения обмоток трансформатора в треугольник и звезду:

Данная схема более дорогостоящая и может применяться только при использовании индивидуального трансформатора.

В данной системе выпрямитель может быть управляем или не управляем. Если он управляем, то функция регулирования напряжения ложится на него, если нет, то на АИН. Для рекуперации энергии в сеть выпрямитель должен быть полностью управляем и реверсивен (двухкомплектный). Управление частотным преобразователем производится импульсным методом. Самые распространенные методы это ШИР (широтно-импульсное регулирование) и ШИМ (широтно-импульсная модуляция).

Еще более широкое применение получили автономные инверторы тока (АИТ):

АИТ – автономный инвертор тока, СУИ, СУВ – системы управления преобразователями, УВ – управляемый выпрямитель, Lф – индуктивность фильтра, fнз – задание частоты выходного тока, іdз – задание выходного тока в звене постоянного тока.

В отличии от АИН, где регулируемой выходной величиной является напряжение, в АИТ регулируемой величиной является ток. Немаловажную роль в формировании выходного сигнала заданной частоты является частота коммутации транзисторов или тиристоров. Чем выше частота коммутации, тем лучше качество синусоиды на выходе частотника, но возрастают потери в преобразователе. Ниже приведен результат моделирования работы АИТ (на IGBT транзисторах) на активно-индуктивную нагрузку при различных частотах коммутации:

Частота коммутации 800 Гц Частота коммутации 2000 Гц

Частота коммутации 8000 Гц

Как видно из графиков уменьшение частоты коммутации очень плохо влияет на выходное качество тока. Поэтому для каждого устройства необходимо подбирать частоту коммутации частотника соответственно качеству выходного напряжения или тока. Для оптимизации данных процессов на выходе преобразователя частоты иногда ставят L-C фильтр, для сглаживания пульсаций токов и напряжений:

Как видим из схемы — последовательно подключают индуктивность, для сглаживания пульсаций тока, и параллельно емкость, для сглаживания пульсаций напряжения.

Также работа частотника генерирует высшие гармоники в питающей сети:

Ток двух фаз питающего напряжения

Для уменьшения влияния высших гармоник на сеть используют фильтро-компенсирующие устройства (ФКУ)

Ниже показаны принципиальные схемы преобразователей частоты.

Автономный инвертор напряжения с управляемым выпрямителем

Тиристоры VS1-VS6 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. При увеличении напряжения на емкости Сф выше заданного, транзистор VT7 открывается и вводится в работу тормозной резистор Rб, на котором рассеивается энергия переданная от электрической машины. При глубоком регулировании VD0 повышает коэффициент мощности выпрямителя.

Данный ПЧ не может рекуперировать энергию в сеть, а также насыщает выходное напряжение высшими гармониками и усложняет систему управления из-за необходимости управления УВ. При исполнении УВ двухкомплектным, рекуперирует энергию в сеть, но усложняет систему и делает ее более дорогостоящей. В настоящее время является устаревшим.

Автономный инвертор напряжения с неуправляемым выпрямителем

Диоды VD7-VD12 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. За счет использования ШИМ происходит регулирование амплитуды выходного напряжения и его частоты.

При использовании неуправляемого выпрямителя для торможения двигателя АИН переводится в режим управляемого выпрямителя, работающего таким образом, что напряжение на емкости Сф выше заданного, несмотря на уменьшение скорости вращения двигателя. При увеличении напряжения на емкости Сф открывается транзистор VT7 и энергия выделяемая электродвигателем гасится на тормозном резисторе.

Данный способ торможения получил названия инверторного торможения, хотя инвертирования на самом деле нет. Это связано с тем, что термин динамическое торможение для систем с асинхронным двигателем занят, под ним понимается пропускания постоянного тока через обмотки двигателя.

Главным недостатком такой системы есть отсутствие возможности рекуперировать энергию в сеть, но она получила широкое применение для систем, где не требуется частое торможение.

Рекуперирующий двухзвенный преобразователь частоты на основе обратимого преобразователя напряжения

ОПН – обратимый преобразователь напряжения. В данной схеме имеется два ОПН. ОПН1 работает в выпрямительном режиме и передает энергию через ОПН2, работающий в инверторном режиме, к двигателю. При торможении ОПН2, подключенный к двигателю переходит в выпрямительный режим, а ОПН1, подключенный к сети, в инверторный режим. При этом происходит рекуперация энергии в сеть. Если задать схеме управления на входе cosφ = ± 1, то во всех режимах при регулировании и торможении двигателя из сети будет потребляться или в сеть будет отдаваться практически только активная мощность, а ток будет практически синусоидален, что определяет минимальное вредное влияние на питающую сеть. Эти преобразователи на сегодняшний день являются самыми близким к идеальным.

Ниже приведена функциональная схема данного устройства:

В схеме имеются следующие элементы: ОПН1, подключенный к сети, ОПН2, подключенный к двигателю, датчики тока и напряжения ДТ1 и ДН1 на стороне сети и ДТ2 и ДН2 на стороне постоянного напряжения. Требуемая мощность на стороне постоянного напряжения определяется измерением средних значений Ud и Id, а затем и мощности Pd с помощью вычислителя ВМ, куда поступают сигналы с ДН2 и ДТ2 через фильтр Ф. По действующему значению напряжения сети U1, определенному с помощью вычислителя напряжения ВН, и с учетом заданного угла φ1 определяется ток I1зад, обеспечивающий заданную мощность. Блок ФСН формирует синусоидальное напряжение, повторяющее напряжение сети, а блок «φ1» формирует заданную синусоиду с учетом фазового сдвига φ1. В блоке «ЗАД i1» формируется заданная синусоида тока. В модуляторе М она сравнивается с сигналом датчика тока ДТ1 i1, и формируются управляющие импульсы, которые через усилитель мощности УМ поступают на транзисторы. Блок НТ определяет направление тока (выпрямительный или инверторный режим). Блок выбора режима ВР в соответствии с сигналом от НТ задает угол φ1.

Преимущества двухзвенного рекуперирующего ПЧ: независимость выходной частоты от входной, возможность получения высокого коэффициента мощности на стороне сети. К недостаткам можно отнести: высокая стоимость, сложность системы управления.

Рекуперирующие двухзвенный преобразователь частоты на основе инверторов тока

Автономный инвертор тока, преобразовывает постоянный ток, подаваемый на его вход, в пропорциональный по величине переменный ток. Режим источника тока на входе обеспечивается за счет большой индуктивности L и применения токостабилизирующей обратной связи, поддерживающей заданное значение тока Idз. АИТ выполнен по схеме с отсекающими диодами. Рекуперация энергии при торможении в АИТ возможна при сохранении направления тока за счет сдвига токов и напряжений, т.е. переводом АИТ в режим выпрямления за счет сдвига управляющих импульсов относительно фазных ЭДС электрической машины.

Энергия, передаваемая от электрической машины на сторону постоянного напряжения, должна быть далее передана в сеть переменного напряжения. Для этого управляемый выпрямитель на входе ПЧ должен быть переведен в инверторный режим. При этом сохраняется направление тока и не требуется установка дополнительного комплекта вентилей. Схема применяется в двигателях достаточно большой мощности. Недостатками схемы являются ее не очень хорошие характеристики, поэтому она не является перспективной.

Появление запираемых тиристоров позволило улучшить характеристики ДПЧ на основе АИТ.

Формирование выходного тока осуществляется совместно управляемым выпрямителем и автономным инвертором тока.

Показана временная диаграмма, отражающая моменты включенного и выключенного состояний тиристора V1. На участке соответствующим зоне 2, ключ V1 включен постоянно, и ток сглаживающего дросселя непрерывно поступает в фазу А двигателя. Для формирования тока в зонах 1 и 3 необходимо соответствующим образом переключать тиристоры. Для обеспечения нарастания и спадания тока (зоны 1 и 3) обычно используется два метода – трапецеидальный и метод выборочного исключения гармоник.

При использовании первого метода моменты коммутации ключей АИТ определяются по пересечению линейно нарастающего сигнала и опорного сигнала пилообразной формы следующего с несущей частотой, при втором методе моменты коммутации ключей рассчитываются заранее исходя из условия подавления высших гармоник определенного порядка (5 и 7 и т.д.). В этой схеме улучшается синусоидальность тока, протекающего по фазам двигателя. Но сохраняются все недостатки, возникающие при питании от сети управляемых выпрямителей напряжения. Преобразователи частоты на основе инверторов тока наиболее применимы в электроприводе синхронных машин, где на выходе вместо автономного инвертора тока включается инвертор тока, ведомый электрической машиной.

Таким образом, на входе и на выходе ПЧ включаются однокомплектные рекуперирующие преобразователи (ОРП) на тиристорах. При этом ведомый инвертор полностью аналогичен выпрямителю, подключенному к сети. Коммутация вентилей ведомого инвертора осуществляется за счет ЭДС электрической машины.При низкой скорости вращения электрической машины эта ЭДС недостаточна для коммутации вентилей. Поэтому при пуске коммутация осуществляется путем прерывания тока в цепи постоянного тока включением и запиранием выпрямителя.

Непосредственные преобразователи частоты

При использовании НПЧ напряжение из сети подается через управляемые вентили на двигатель. В каждой фазе НПЧ установлен реверсивный двухкомплектный преобразователь с совместным или раздельным управлением силовыми комплектами.

На рис. 1а приведена схема трехфазно-однофазного НПЧ на основе трехфазных нулевых схем. Он преобразует трехфазное напряжение в однофазное, но с регулируемой частотой.Комплекты В и Н переключаются, и на выходе получается двуполярное напряжение. Для управления преобразователями используют определенные законы управления — прямоугольный и синусоидальный. Если используют прямоугольный принцип управления, то алгоритм работы будет таков: при прохождении одной полуволны напряжения, на один из комплектов подаются управляющие импульсы с углом управления (углом задержки) a = const. Этот комплект будет работать в режиме выпрямителя, а затем с углом управления (углом опережения) b = a. Чтоб снизить ток необходимо перейти в инверторный режим (рис. 1 б). Для избежания короткого замыкания в самом инверторе необходимо чтоб ток снизился до нуля – это называется бестоковой паузой. После осуществления бестоковой паузы в работу включается второй комплект.

Если используют синусоидальное управление, то гладкая составляющая выходного напряжения должна изменятся по синусоидальному закону, для этого угол управления a непрерывно меняется (рис. 1 в).

Рисунок 1.

Схема трехфазно-трехфазного НПЧ, выполненного на основе трехфазных мостовых схем. Ниже приведена схема.

Данный тип преобразователей не получил широкого применения из-за ряда недостатков при его применении. А это: невозможность полного регулирования выходной частоты (при использовании трехфазных мостовых схем диапазон регулирования 25-45 Гц, а при нулевых 15-45 Гц). Постоянная коммутация вентилей, что приводит к ухудшению коэффициента мощности, а также плохое качество выходного напряжения и большое влияние на питающую сеть.

Преимуществом можно признать то, что у таких преобразователей более высокий КПД, из-за однократного преобразования энергии.

Наиболее распространены преобразователи частоты на базе АИТ и АИН на IGBT транзисторах, в силу лучших показателей качества энергии на выходе преобразователя и их влияния на сеть.

Что такое преобразователь частоты и для чего он нужен?

Для регулирования работы асинхронного двигателя с целью не допустить снижения его КПД применяют специальные устройства – частотные преобразователи. Их работа заключается в том, что они плавно изменяют скорость вращения двигателя, с помощью смены частоты питающего напряжения.

В данной статье мы постараемся рассмотреть ряд незаметных, на первый взгляд, особенностей в работе асинхронного электродвигателя и проанализируем, насколько важно в ходе его эксплуатации использовать частотный преобразователь.

Что может привести к неисправности?

В асинхронном двигателе напряжение для работы чаще всего поступает через последовательно включенный автоматический выключатель. То сесть данный способ запуска двигателя по другому называется – плавный пуск. Таким образом это провоцирует высокий рост тока пусковой обмотки, что для оборудования закончится весьма плачевно.

Частотный преобразователь имеет к этому важное отношение – он контролирует ток электродвигателя. Формируя необходимое напряжение нужной амплитуды и частоты, частотник подает их на двигатель. Поясним – в процессе его запуска преобразователь отдает не полную частоту, скажем, в 50 Герц, а где-то 0,1Гц (или чуть больше). То же самое и с напряжением – не все 220 В или 380 В, а около 20-30 (смотря, какие выставлены настройки).

Принцип работы преобразователя частоты для электродвигателя

Все это позволяет пропускать через обмотку статора ток оптимального значения, не выше номинального показателя, чтобы создать магнитное поле, которое, в свою очередь, вместе с созданным в обмотке током создаст крутящий момент. Что касается принципов изменения характеристик напряжения, то подробно об этом, а также о критериях выбора частотника, вы можете прочесть здесь, в одной из других наших статей. Кстати, если говорить о критериях выбора, то отметим также, что выходные токи преобразователя частоты должны быть ниже тока полного режима нагрузки.

Читайте также:  Что такое дизельный генератор?

Выше мы описывали старт двигателя. Что касается разгона, то в ходе этого процесса преобразователь плавно повышает частоту и величину поступаемого напряжения, тем самым разгоняя двигатель. Главное – настроить частотник таким образом, чтобы времени на разгон уходило как можно меньше, а ток обмотки статора не был выше её номинального значения. Кроме того, важно поддерживать достаточный крутящий момент на валу.

Почему без преобразователя не обойтись? Главные преимущества его использования

Итак, преобразователь частоты дает следующие преимущества при управлении асинхронным двигателем:

  1. Плавный пуск и остановка электропривода
  2. Управление производительностью оборудования
  3. Установка оптимальных режимов работы
  4. Взаимное согласование электроприводов в сложных системах

Самые важные – это 1 и 2 пункты. Почему именно они?

Плавный пуск позволяет наращивать скорость постепенно, что позволяет не допустить скачков тока. Неконтролируемые скачки опасны, так как при прямом пуске они превышают номинальные показатели в 5-7 раз, что может спровоцировать высокую нагрузку на электросеть, защитит оборудование от перегрузок и сэкономит деньги на затратах электроэнергии.

Что касается управления производительностью, то в этом случае преобразователь частоты контролирует скорость работы электродвигателя с учетом «реальных нужд» в системе в целом. Это также помогает напрасно не тратить энергию и гарантирует её экономию в 30-60%.

Помимо 4-х основных преимуществ описанных выше, использование преобразователя обеспечивает следующие преимущества:

  • Понижение величины пусковых токов в 4-6 раз
  • Регулировка частоты и напряжения с экономией до 50% электроэнергии
  • Самостоятельное выключение контактора, снятие напряжения и с его плавной подачей в звено постоянного тока
  • Устранение ударных нагрузок, защита двигателя от механической перегрузки, либо недогрузки
  • Понижение общего числа ненужных отключений при ударных нагрузках
  • Обеспечение нужной величины и частоты при запуске оборудования, поддержание обратной связи смежных приводов
  • Контроль скорости вращения ротора и анализ работы двигателя

Классификация частотных преобразователей

В первую очередь, данные устройства различаются по режимам работы:

  • Амплитудно-частотное регулирование (скалярное) – применяются в обычных установках с вентиляторами, насосами, тележками, транспортерами и т.д. где не требуется стабилизация оборотов двигателя
  • Векторное регулирование – используются на любом оборудовании, где возможны резкие изменения крутящего момента на валу, причем в большом диапазоне и где нужна высокая стабильность оборотов на валу электродвигателя.

По типу питания:

  • Низковольтный 0,4 кВ
  • Среднее напряжение 0,69 кВ
  • Высоковольтный 6 и 10 кВ

Также данные устройства бывают с промежуточным звеном (связью) и без него. О характере работы таких устройств читайте тут, в ещё одной нашей статье.

Настройка

Настройка преобразователей выполняется строго по инструкции производителя и с учетом особенностей задачи, которая решается посредством оборудования, в котором установлен двигатель.

Например, если применяется асинхронный двигатель скалярного типа, то амплитуду сигнала и выходную частоту устанавливают по определенной формуле. Для других видов двигателя обычно используют датчики скорости вращения вала двигателя. Последовательность этапов алгоритма настройки мы перечислили здесь, в другом нашем материале.

Можно ли отказаться от частотных преобразователей?

Можно. Но лучше этого не делать. Безусловно, скорость вращения можно также регулировать и при помощи гидравлической муфты или механического вариатора и других. Но данные приспособления неэкономичны (а в промышленности это крайне важно!), у них узкий диапазон регулирования, что доставляет серьезные неудобства в ходе эксплуатации, а также они гораздо быстрее выйдут из строя.

Итоги: почему нужно использовать преобразователи частоты?

Вот основной перечень преимуществ для работы оборудования, которые вы получаете, используя преобразователи:

  • Плавный пуск и плавную остановку оборудования
  • Эффективную защиту от перегрузок и бросков напряжения
  • Возможность эксплуатации оборудования с большими номинальными сетевыми напряжениями и токами
  • Понижение энергопотребления
  • Стабильность технологического процесса и улучшение КПД

Итак, это наиболее важная информация о частотных преобразователях, которую мы хотели до вас донести. В завершение скажем о том, от чего зависит стоимость и на что стоит обращать внимание при выборе. Это такие факторы, как марка производителя, модель и тип управления преобразователем. Также стоит обращать внимание при выборе на тип и уровень мощности двигателя, его диапазон и точность, а также степень точности поддержки крутящего момента.

Что такое частотный преобразователь, как он работает и для чего нужен

Определение

По определению частотный преобразователь – это электронный силовой преобразователь для изменения частоты переменного тока. Но в зависимости от исполнения изменяется и уровень напряжения, и число фаз. Может быть вам не совсем понятно, для чего нужен такой прибор, но мы постараемся рассказать о нём простыми словами.

Частота вращения вала синхронных и асинхронных двигателей (АД) зависит от частоты вращения магнитного потока статора и определяется по формуле:

где n – число оборотов вала АД, p – число пар полюсов, s – скольжение, f – частота переменного тока (для РФ – 50 Гц).

Простым языком, частота вращения ротора зависит от частоты и числа пар полюсов. Число пар полюсов определяется конструкцией катушек статора, а частота тока в сети постоянна. Поэтому, чтобы регулировать обороты мы можем регулировать только частоту с помощью преобразователей.

Устройство

С учетом сказанного выше сформулируем заново ответ на вопрос, что это такое:

Частотный преобразователь — это электронное устройство для изменения частоты переменного тока, следовательно, и числа оборотов ротора асинхронной (и синхронной) электрической машины.

Условное графическое обозначение согласно ГОСТ 2.737-68 вы можете видеть ниже:

Электронным он называется потому, что в основе лежит схема на полупроводниковых ключах. В зависимости от функциональных особенностей и типа управления будут видоизменяться и принципиальная электрическая схема, и алгоритм работы.

На схеме ниже вы видите как устроен частотный преобразователь:


Принцип действия преобразователя частоты лежит в следующем:

  • Сетевое напряжение подаётся на выпрямитель 1 и становится выпрямленным пульсирующим.
  • В блоке 2 сглаживаются пульсации и частично компенсируется реактивная составляющая.
  • Блок 3 – это группа силовых ключей, управляемых системой управления (4) методом широтно-импульсной модуляции (ШИМ). Такая конструкция позволяет получить на выходе двухуровневое ШИМ-регулируемое напряжение, которое после сглаживания приближается к синусоидальному виду. В дорогих моделях нашла применение трёхуровневая схема, где используется больше ключей. Она позволяет добиться более близкой к синусоидальной формы сигнала. В качестве полупроводниковых ключей могут использоваться тиристоры, полевые или IGBT-транзисторы. В последнее время наиболее востребованы и популярны последние два типа из-за эффективности, малых потерь и удобства управления.
  • С помощью ШИМ формируется нужный уровень напряжения, простыми словами – так модулируют синусоиду, поочередно включая пары ключей, формируя линейное напряжение.

Так мы кратко рассказали, как работает и из чего состоит частотный преобразователь для электродвигателя. Он используется в качестве вторичного источника электропитания и не просто управляет формой тока питающей сети, а преобразует его величину и частоту в соответствии с заданными параметрами.

Виды частотников и сфера применения

Способы управления

Регулировка оборотов может осуществляться разными способами, как по способу установки требуемой частоты, так и по способу регулирования. Частотники по способу управления делят на два типа:

  1. Со скалярным управлением.
  2. С векторным управлением.

Устройства первого типа регулируют частоту по заданной функции U/F, то есть вместе с частотой изменяется и напряжение. Пример такой зависимости напряжения от частоты вы можете наблюдать ниже.

Она может отличаться и программироваться под конкретную нагрузку, например, на вентиляторах она не линейная, а напоминает ветвь параболы. Такой принцип работы поддерживает магнитный поток в зазоре между ротором и статором почти постоянным.

Особенностью скалярного управления является его распространенность и относительная простота реализации. Используется чаще всего для насосов, вентиляторов и компрессоров. Такие частотники часто используют, если нужно поддерживать стабильное давление (или другой параметр), это могут быть погружные насосы для скважин, если рассматривать бытовое применение.

На производстве же сфера применения широка, например, регулировка давления в тех же трубопроводах и производительности автоматических систем вентиляции. Диапазон регулирования обычно составляет 1:10, простым языком максимальная скорость от минимальной может отличаться в 10 раз. Из-за особенностей реализации алгоритмов и схемотехники такие устройства обычно дешевле, что и является основным преимуществом.

Недостатки:

  • Не слишком точная поддержка оборотов.
  • Медленнее реакция на изменение режима.
  • Чаще всего нет возможности контролировать момент на валу.
  • С ростом скорости сверх номинальной падает момент на валу двигателя (то есть когда поднимаем частоту выше номинальных 50 Гц).

Последнее связано с тем, что напряжение на выходе зависит от частоты, при номинальной частоте напряжение равняется сетевому, а выше частотник поднимать «не умеет», на графике вы могли видеть ровную часть эпюры после 50 Гц. Следует отметить и зависимость момента от частоты, она падает по закону 1/f, на графике ниже изображена красным, а зависимость мощности от частоты синим.

Преобразователи частоты с векторным управлением имеют другой принцип работы, здесь не просто напряжение соответствует кривой U/f. Характеристики выходного напряжения изменяются в соответствии с сигналами от датчиков, так чтобы на валу поддерживался определенный момент. Но зачем нужен такой способ управления? Более точная и быстрая регулировка – отличительные черты частотного преобразователя с векторным управлением. Это важно в таких механизмах, где принцип действия связан с резким изменением нагрузки и момента на исполнительном органе.

Такая нагрузка характерна для токарных и других видов станков, в том числе ЧПУ. Точность регулирования до 1,5%, диапазон регулировки – 1:100, для большей точности с датчиками скорости и пр. – 0,2% и 1:10000 соответственно.

На форумах бытует мнение, что на сегодняшний день разница в цене между векторными и скалярными частотниками меньше чем была раньше (15-35% в зависимости от производителя), а главным отличием является в большей степени прошивка, чем схемотехника. Также отметим, что большинство векторных моделей поддерживают и скалярное управление.

  • большая стабильность работы и точность;
  • быстрее реакция на изменения нагрузки и высокий момент на низкой скорости;
  • шире диапазон регулирования.

Главный недостаток – стоит дороже, чем скалярные.

В обоих случаях частота может задаваться вручную или датчиками, например, датчиком давления или расходомером (если речь вести о насосах), потенциометром или энкодером.

Во всех или почти во всех преобразователях частоты есть функция плавного пуска двигателя, что позволяет легче пускать двигатели от аварийных генераторов практически без риска его перегрузки.

Количество фаз

Кроме способов реагирования частотники отличаются и количеством фаз на входе и выходе. Так различают частотные преобразователи с однофазным и трёхфазным входом.

При этом большинство трёхфазных моделей могут питаться от одной фазы, но при таком применении их мощность уменьшается до 30-50%. Это связано с допустимой токовой нагрузкой на диоды и другие силовые элементы схемы. Однофазные же модели выпускаются в диапазоне мощностей до 3 кВт.

Важно! Учтите, что при однофазном подключении с напряжением на вход 220В, будет выход 3 фазы по 220В, а не по 380В. То есть линейное на выходе будет именно 220В, если говорить кратко. В связи с чем распространенные двигатели с обмотками, рассчитанными на напряжения 380/220В нужно соединять в треугольник, а те что на 127/220В – в звезду.

В сети вы можете найти много предложений типа «частотный преобразователь 220 на 380» — это в большинстве случаев маркетинг, продавцы любые три фазы называют «380В».

Чтобы получить настоящие 380В из одной фазы нужно либо использовать однофазный трансформатор 220/380 (если вход преобразователя частоты рассчитан на такое напряжение), либо использовать специализированный частотный преобразователь с однофазным входом и 380В трёхфазным выходом.

Отдельным и более редким видом преобразователей частоты являются однофазные частотники с однофазным выходом 220. Они предназначены для регулировки однофазных двигателей с конденсаторным пуском. Примером таких устройств являются:

Схема подключения

В реальности же, чтобы получить из частотного преобразователя 380В выход 3 фазы, нужно подключить на вход 3 фазы 380В:

Подключение частотника к одной фазе аналогично, за исключением подключения питающих проводов:

Однофазный преобразователь частоты для двигателя с конденсатором (насоса или вентилятора малой мощности) подключается по такой схеме:

Как вы могли видеть на схемах, кроме питающих проводов и проводов к двигателю у частотника есть и другие клеммы, к ним подключаются датчики, кнопки выносного пульта управления, шины для подключения к компьютеру (чаще стандарта RS-485) и прочее. Это даёт возможность управления двигателем по тонким сигнальным проводам, что позволяет убрать частотный преобразователь в электрощит.

Частотники – это универсальные устройства, назначение которых не только регулировка оборотов, но и защита электродвигателя от неправильных режимов работы и электропитания, а также от перегрузки. Кроме основной функции в устройствах реализуется плавный пуск приводов, что снижает износ оборудования и нагрузки на электросеть. Принцип работы и глубина настройки параметров большинства частотных преобразователей позволяет экономить электроэнергию при управлении насосами (ранее управление осуществлялось не за счет производительности насоса, а с помощью задвижек) и другим оборудованием.

На этом мы и заканчиваем рассмотрение вопроса. Надеемся, после прочтения статья вам стало понятно, что такое частотный преобразователь и для чего он нужен. Напоследок рекомендуем просмотреть полезно видео по теме:

Наверняка вы не знаете:

Ссылка на основную публикацию