Как управлять системой вентиляции?

Автоматизация общеобменной вентиляции

Вентиляция: Обмен воздуха в помещениях для удаления избытков теплоты, влаги, вредных и других веществ с целью обеспечения допустимого микроклимата и качества воздуха в обслуживаемой или рабочей зоне при средней необеспеченности 400 ч/год – при круглосуточной работе и 300 ч/год – при односменной работе в дневное время (СП 60.13330.2012.)

Вентиляция бывает приточной и вытяжной.

Приточная – это вентиляция, при которой осуществляется подача очищенного свежего воздуха заданной температуры и влажности приточными установками и центральными кондиционерами.

Вытяжная – это вентиляция, при которой осуществляется удаление воздух из помещения с помощью вытяжных вентиляторов.

Приток и вытяжка должны быть равны по объему (исключением является противодымная вентиляция – когда на путях эвакуации создается подпор приточного воздуха). Внутри объекта приточный и вытяжной воздух распределяются по неравномерно. Например, в комнате приготовления пищи, в сан узлах, в комнатах сбора мусора баланс должен быть отрицательный (вытяжка больше притока), в чистых помещениях, например, кабинетах, переговорных, в чистых комнатах (микроэлектроника, фармацевтика) – напротив, положительный (приток больше вытяжки). Тогда запахи и пыль не будут распространяться по всем площадям и будут локализованы.

Кратность воздухообмена —определяется числом обменов воздуха в помещении за единицу времени. Она равняется отношению объема воздуха, который подается в помещение в единицу времени, к объему помещения. Кратность воздухообмена может быть переменной величиной, она зависит от количества людей в помещении, температуры, влажности и т.п. Управление кратностью должно осуществляться в автоматическом режиме.

Кроме обеспечения комфортных условий в помещениях, автоматизации вентиляционных систем:

  • Осуществляет контроль и управление работой агрегатов вентиляции, это до минимума сокращает необходимость вмешательства пользователя;
  • Обеспечивает поиск и индикацию неисправностей оборудования;
  • Измеряет параметры электрической цепи оборудования, режимов его работы, и в случае их отклонения защищает его от возможных коротких замыканий, перегрузок, перегревов и замерзания. В качестве примера приведено фото разорванного калача калорифера вентиляционной системы, автоматика не обеспечила циркуляцию теплоносителя в ночной период времени;

  • Осуществляет контроль состояние воздушных фильтров, информирует службу эксплуатации о предстоящем техобслуживании;
  • Управляет температурой воздуха, влажностью, уровнем загазованности в отдельных помещениях объекта и в целом;
  • Обеспечивает работы по расписанию: недельный, суточный или циклический режим работы таймером без вмешательства человека;
  • Позволяет управлять основными возможностями системы вентиляции с единого пульта или удаленно.
  • Процесс работы не автоматизированной системы вентиляции выглядит следующим образом: в помещение стало душно, оператор поднимает производительность системы вентиляции, в помещении стало холодно, оператор снижает производительность вентиляционной системы. Данный пример не имеет ничего общего с работой современных систем вентиляции, но иллюстрирует основную задачу системы автоматизации, которая должна выполняться – создание комфорта для посетителей здания или обеспечение заданных условий для производства.

    Общий алгоритм работы системы. Основные параметры воздуха внутри помещения и на улице постоянно контролируются, измеряется температура воздуха, влажность, наличие в воздухе посторонних газов и примесей, концентрация СО2 и т.д. Данные поступают на микропроцессорный контроллер и анализируются. При выходе значений за определенный интервал (эти значения задаются при настройке системы, они называются «уставка»), контроллер передает управляющий сигнал на запуск исполнительных механизмов, вентиляторов, охладителей, нагревателей, осушителей, срабатывают клапана и заслонки, управляющих сечением воздуховодов и пр. При возвращении значений параметров в заданный диапазон, контроллер отправляет корректирующие сигналы.

    Необходимость технического обслуживания определяется по косвенным параметрам, по падению давления или снижению скорости воздушных потоков в воздуховодах, энергопотреблению электрооборудования, сравнению параметров системы со средними для данного режима работы. Информация, выводимая оператору, сообщает о необходимости замены масла в компрессоре, замене фильтров, чистке воздуховодов и т.д.

    Автоматика систем вентиляции состоит из следующих элементов:

    • Датчики и преобразователи;
    • Регуляторы;
    • Исполнительные механизмы;
    • Щиты автоматизации (контроллеры, управляющие контакты).

    Датчики и преобразователи

    Датчики – это элементы систем автоматизации вентиляции, служащие для получения информации о реальном состоянии регулируемого объекта. С их помощью осуществляется обратная связь системы регулирования с объектом по следующим параметрам: температуре, давлению, влажности и т.д.

    Для того, чтобы информация с датчика передавалась системе в виде цифрового кода каждый датчик снабжается преобразователем.

    Оптимальные места установки датчиков указываются в прилагаемых к ним инструкциях.

    Датчики температуры могут быть для внутреннего и наружного применения; накладными на трубопровод (для контроля температуры поверхности трубопровода) или канальными (для измерения температуры воздуха в воздуховоде). Внутри помещений датчики температуры устанавливаются в нейтральных, относительно источников тепла или холода местах, снаружи здания в местах где датчик будет защищен от ветра или прямого попадания солнечных лучей.

    Датчики влажности представляют собой блок с электронным прибором, измеряющим относительную влажность, и преобразующий данные в электронный сигнал. Бывают наружного и внутреннего исполнения. Устанавливаются в местах со стабильными условиями влажности, не допускается установка их вблизи радиаторов отопления, блоков кондиционеров, у источников влаги.

    Датчики давления подразделяются на реле давления (механическое измерение перепада давлений и электрическое преобразование) и аналоговые датчики давления (преобразование давления сразу в электрический сигнал, например, с помощью пьезо-элементов). И те, и другие применяются для измерения давление как в одной точке, так и разность давлений в двух точках.

    И внешние и внутренние датчики желательно устанавливать по два и более, например, с северной и с южной стороны здания. В современных системах, все внешние климатические датчики объединяют в единую метеостанцию.

    Датчики потока измеряют скорость движения жидкости или газа в трубопроводе или воздуховоде. Расход жидкости вычисляется по формуле внутри процессорного блока исходя из разности давлений и других параметров (температуры, сечения трубопровода, плотности).

    Исполнительные устройства

    Исполнительные устройства следует рассматривать в привязке к управлению приводом.

    Это важный элемент в таком процессе как управление вентиляцией, на долю которого выпадает роль осуществления приводной части автоматизации. Эти механизмы могут быть как электрическими, так и гидравлическими.

    В качестве исполнительных устройств могут выступать клапаны, заслонки и частотные регуляторы.

    Регуляторы

    Регуляторы – это один из основных элементов системы автоматики для вентиляции, обеспечивающий управление исполнительными механизмами по показаниям различных датчиков.

    По функциональному предназначению эти элементы вентиляционных систем подразделяются на регуляторы скорости и регуляторы температур.

    Регуляторы скорости бывают однофазными и трёхфазными (также, как и двигатели). Также они бывают с плавным или ступенчатым регулированием, при этом выбор способа регулирования зависит от мощностей вентиляторов. Наиболее современным и экономичным является способ скорости вращения насосов и вентиляторов с помощью преобразователей частоты (ПЧ). Несмотря на высокую стоимость, ПЧ экономически оправдывают себя уже на двигателях с мощностью более 1 кВт.

    Регуляторы температур в зависимости от способа управления бывают пороговыми, управляющие температурой с помощью полностью открытой или полностью закрытой заслонки (пример – автомобильный термостат), и с пропорционально дифференциальным управлением (PID), позволяют плавно управлять температурой в рабочем диапазоне.

    Управление регуляторами в системах автоматизации вентиляции осуществляется из щитов управления.

    Щиты автоматизации

    Работа автоматизированной системы, ее удобство, надежность и безопасность эксплуатации напрямую зависят от алгоритмов управления процессом (специалистов, выполнивших проектирование и наладку), а также от возможностей комплектующих изделий. Алгоритмы реализуются на программном уровне и «зашиваются» в свободно программируемые контроллеры, установленные в щитах автоматизации.

    При подключении датчиков к щиту автоматизации учитывают тип сигнала, передаваемого преобразователем (аналоговый, дискретный или пороговый). Аналогично выбираются и модули расширения, управляющие приводами устройств.

    Щиты вентсистем бывают силовые, управляющие или совмещенные, если система небольшая. Щиты автоматики для вентиляции обеспечивают:

    • Включение и выключение системы вентиляции;
    • Индикацию состояния оборудования;
    • Защиту от неправильного подключения питающего напряжения и короткого замыкания;
    • Управление производительностью вентиляционной установки;
    • Индикацию состояния воздушных фильтров;
    • Защиту от перегрева электродвигателей;
    • Защиту калорифера от замерзания;
    • Поддержку и контроль температуры воздуха на входе вентиляционной установки и в помещении;
    • Возможность применения временных ручных алгоритмов управления.

    Проектирование системы автоматизации вентиляции и кондиционирования

    Система автоматизации вентиляции и кондиционирования является одним из наиболее сложных проектов инженерных систем здания.

    Это связано с большим количеством точек контроля и исполнительных устройств в системе и учетом нескольких режимов работы системы, включая зимний и летний. Предусматривают:

    • Автоматическое управление производительностью установок систем вентиляции;
    • Сблокированную работу двигателей приточно-вытяжных вентиляторов и заслонок на воздухозаборе;
    • Автоматическую регулировку температуры подающего воздуха;
    • Автоматическое отключение систем при аварийных ситуациях;
    • Защиту калориферов от замораживания;
    • Разные режимы пуска в зависимости от сезона;
    • Контроль параметров внешней и внутренней среды, и параметров техпроцесса- температур, перепадов давления, влажности и т.п.

    Проект разрабатывается по заданию технологов – специалистов, разработчиков проекта вентиляции и кондиционирования. В стандартный комплект чертежей включают:

    • Общие данные;
    • Структурные схемы, при необходимости;
    • Задание на программирование системы;
    • Функциональные схемы автоматизации для каждой из подсистем – по ним будут собираться щиты автоматизации;
    • Схемы связи контроллеров системы автоматизации;
    • Схемы внешних соединений для щитов автоматизации (фактически это таблица соединений);
    • Схемы связи со смежными системами автоматизации;
    • Принципиальные электрические схемы щитов автоматизации, двигателей насосов или вентиляторов;
    • Принципиальные схемы питания щитов автоматизации;
    • План расположения оборудования и проводок систем автоматизации;
    • Кабельные журналы;
    • Монтажные схемы;
    • Спецификация оборудования и проводок.

    Режимы работы системы. Работа в системе автоматизации и диспетчеризации здания

    Щит автоматизации системы вентиляции должен обеспечивать работу в следующих режимах:

    Ручном. В этом случае управление системой осуществляется вручную.

    Автоматическом автономном, с передачей данных в систему диспетчеризации. В этом случае включение и выключение происходит автономно, без учета показаний смежных инженерных систем, при этом уведомления о работе системы передаются диспетчеру.

    Автоматический в составе автоматизированной системы управления зданием. При таком режиме работа вентиляции синхронизирована с другими системами жизнеобеспечения здания. Все системы здания, управляемые по разработанным алгоритмам, формируют систему автоматизации и диспетчеризации здания.

    Управление системой осуществляется по протоколам управления здания. Наиболее известные это LonWorks, ModBus, BACnet.

    Управление вентиляцией при пожаре

    При проектировании систем автоматики вентиляции, учитывают их работу в случае пожара.

    Согласно СП 60.13330.2012, для зданий и помещений, оборудованных автоматическими установками пожаротушения или автоматической пожарной сигнализацией, следует предусматривать автоматическое действия электроприемников систем вентиляции:

    • Отключение при пожаре в помещении или в системе вентиляции, которое может производиться централизованно, прекращая подачу электропитания и обеспечивая закрытие противопожарных клапанов на распределительные щиты систем вентиляции, или индивидуально для каждой системы с целью предотвращения распространения огня по воздуховодам и остановки притока кислорода к пламени;
    • Включения систем противодымной вентиляции на путях эвакуации и в зонах безопасности, или противодымной вентиляции в помещении, где произошел пожар, в зависимости от проектных решений;
    • Включения систем для удаления газа и дыма после пожара.

    Системы управления электроэнергией. Контроль и автоматизированное управление работой системы. Подробнее »

    В ближайшем будущем, появится возможность увеличения КПД солнечных панелей до 50%. Эффективность. Подробнее »

    Руководство Филиала КОО «ЛОГРАР ЛИМИТЕД» выражает благодарность коллективу ООО. Подробнее »

    КОО «ЛОГРАР ЛИМИТЕД» 1 сентября 2015

    Уважаемый Ринат Шакирзянович! ООО «ФИНПРОЕКТ» выражает благодарность компании ООО. Подробнее »

    Щит управления вентиляцией: устройство, назначение + как правильно собрать

    Промышленные здания, общественные заведения и жилые дома оборудуют сложными по своему устройству сетями кондиционирования и вентиляции. Чтобы организовать работу системы, объединяющей множество технических приборов, применяют щит управления вентиляцией – ЩУВ.

    Мы расскажем, как скомплектовать щит, позволяющий контролировать вентсистему и устанавливать оптимальный для работы или отдыха режим. В представленной нами статье приведены компоненты, описаны особенности их подключения. Учет наших рекомендаций поможет грамотно автоматизировать запуск и остановку оборудования.

    Назначение щита управление вентиляцией

    Если необходимо включить или настроить бытовую сплит-систему или приборы приточной вентиляции, зафиксированный в отверстии вентканала, то никаких узлов контроля не требуется – каждый прибор регулируется вручную или с пульта д/у.

    Но если протяженность сетей большая, а приборы установлены в недоступных местах: в шахтах, на крыше или чердаке, в специально предназначенных нишах внутри стен – то возникает необходимость в монтаже блока дистанционного управления.

    Современные ЩУВ представляют собой панели с индикаторными регулирующими устройствами или металлические шкафы, которые устанавливают на пол или подвешивают к стене. Для защиты внутреннего наполнения предусмотрены распашные дверки, закрывающиеся на замок. Кроме аббревиатуры ЩУВ можно встретить ШУВ (шкаф).

    Основные функции ЩУВ:

    • контроль над оборудованием, входящим в системы вентиляции и кондиционирования;
    • защита агрегатов от возникновения перегрева, некорректного монтажа и подключения, короткого замыкания;
    • регулировка важнейших параметров оборудования, таких как производительность или мощность;
    • программирование работы всей системы или отдельных агрегатов на заданный временной промежуток – день, неделю, месяц;
    • обеспечение индикации, которая облегчает контроль и регулировку;
    • поддержание определенной температуры в различных помещениях, возможность быстрого изменения ее параметров;
    • контроль над внутренними стенками воздуховодов и степенью загрязнения фильтров;
    • предупреждение сбоев в работе сезонно зависимого оборудования, например, водяных калориферов, которые могут промерзнуть при слишком низкой температуре.
    Читайте также:  Как отремонтировать ламинатор — основные неисправности

    Установка электротехнического щита на предприятии или в жилом здании позволяет обслуживающему персоналу следить за работой оборудования из одного места и быстро реагировать на поломки и остановку отдельных устройств. Приборы, регулирующие устройства пожаротушения и частично отопления, также могут размещаться в этом же шкафу.

    При возникновении аварийной ситуации, например, возгорания в одном из помещений, остановка вентиляционного оборудования происходит автоматически или вручную – с панели ЩУВ.

    Особенности устройства ЩУВ

    Установка и комплектация щитов управления производится по правилам и нормам, которые диктуют государственные документы, такие как ГОСТ Р 51321.1. Шкафы для насосов и электрики, щиты вентиляции и систем кондиционирования монтируют в коридорах, подсобных комнатах или в специально отведенных помещениях – щитовых.

    Если здание располагает возможностями, то все блоки контроля, включая вентиляционные и противопожарные, устанавливают в диспетчерских.

    Производители электротехнического оборудования предлагают множество конфигураций, которые отличаются размерами, функциями, степенью защиты и уровнем программирования. Наиболее простые модификации предназначены для обслуживания частной жилой недвижимости, сложные – предприятий и общественных зданий.

    Требования к комплектации щитов управления

    При выборе ШУВ ориентируются на размеры рабочей площади, возможность установки нужных приборов, эргономику и безопасность. Последний пункт касается как самих монтажников, регулярно обслуживающих сети, так и людей, которые могут оказаться поблизости.

    Главные требования к ШУВ и ЩУВ таковы:

    • щит должен вмещать все приборы управления системой вентиляции и кондиционирования;
    • важные узлы необходимо снабдить индикацией, световой, цифровой или подключенной к ПК;
    • приборы, отвечающие за наиболее значимое оборудование, должны иметь двойное управление – автоматическое и ручное.

    Все приборы аккуратно размещаются на одной плоскости. Комплектация должна быть максимально простой и доступной для понимания. Если сборку щита вентиляции произвести по всем правилам, то при необходимости даже несведущий в электрике человек сможет отключить аварийные устройства.

    Наполнение и функциональность щитов могут отличаться. Например, для одних систем преобразователь частот необходим, а другие обходятся без него. Максимально удобными для пользования являются шкафы и щиты с автоматикой и пультами д/у.

    Обзор рабочих элементов

    Конструктивно ШУВ – это пластиковый или металлический корпус прямоугольной формы, имеющий необходимый класс защиты IP 45. Если условия эксплуатации связаны с увеличенным риском, то класс защиты выше.

    Внутри корпуса размещены такие приборы, как блок питания, контроллер, преобразователи. Несколько автоматических выключателей отвечают за отдельные устройства: калориферы, рекуператоры, вентиляторы, охладительные установки и др.

    Обязательный элемент – пульт ручного управления. Также необходим блок сигнализации, который срабатывает в аварийной ситуации и производит оповещение световыми или звуковыми сигналами.

    К элементам управления относятся и датчики. Это своего рода рецепторы, собирающие различную информацию о состоянии системы и ее окружения.

    Они снимают температуру воздуха и самих устройств, степень концентрации газов или загрязнения элементов системы, измеряют скорость движения воздуха и др. Полученные данные поступают к автоматическим регуляторам, и происходит корректировка работы элементов системы.

    По функциям датчики делят на следующие виды:

    • температурные;
    • влажности;
    • скорости;
    • давления и др.

    Температурные могут быть как цифровыми, так и аналоговыми. Сигнал о резком повышении или понижении температуры внутри помещений может стать причиной переключения работы системы на другой режим.

    По тому же принципу действуют датчики влажности. Как происходит движение воздушных масс внутри вентиляционных каналов можно узнать благодаря датчикам скорости и давления. По месту установки датчики делят на внутренние и наружные. Первые снимают данные в помещениях, вторые, которые еще называют атмосферными или уличными, — снаружи зданий.

    Часть датчиков фиксируют на поверхности деталей, которые необходимо контролировать. Они снимают параметры самих устройств, например, температуру обмотки, скорость вращения и др.

    Монтаж датчиков сопровождается тщательным выбором. С одной стороны, чем больше информации, тем точнее работает система, но с другой функционирование и обслуживание сети становится затратным с точки зрения расхода электроэнергии.

    В сцепке с датчиками работают контроллеры. Это те приборы, которые получают информацию и обрабатывают ее в автоматическом режиме. Их можно назвать посредниками, так как дальше сигнал передается исполнительным устройствам: переключателям воздушных потоков, вентиляторам, холодильным установкам, калориферам.

    Особой популярностью пользуются контроллеры универсального типа, которые одновременно способны обрабатывать информацию, поступающую из различных систем: вентиляции, отопления и др.

    Рекомендации по сборке ШУВ

    Монтажом и тестированием ЩУВ должны заниматься специалисты, имеющие соответствующую квалификацию, самостоятельно монтировать и подключать элементы внутри щита или шкафа не только не рекомендуется, но и запрещено.

    Корпуса не изготавливают своими руками, а приобретают в готовом виде или заказывают с учетом специфики вентиляционной системы. Вместе с корпусом поставляется комплект устройств: рубильники, контроллеры, блоки питания, выключатели, элементы защиты и провода.

    Нередко встречается и такое, что набор приборов и деталей укомплектован не в полной мере – не хватает проводов или автоматических выключателей. При доборе запчастей необходимо сохранить соответствие технических характеристик (например, сечение проводов или силу тока автомата).

    Перед заказом необходимо составить список всех устройств, которые входят в вентиляционную систему, а также высказать пожелания относительно переключения режимов работы, вида контроллера, наличия тех или иных датчиков. В некоторых ЩУВ вместо контроллеров устанавливают реле.

    Примером ЩУВ может служить образец со следующим техническим характеристиками:

    • ном. частота – 50 Гц;
    • напряжение – 380 В;
    • напряжение подключенного вентилятора – 220 В;
    • мощность двигателя – 22 кВт;
    • уровень защиты – IP65;
    • размеры – 400х800х180 мм;
    • срок эксплуатации – 10 лет.

    Готовые модели промаркированы условными обозначениями, где содержится информация о модификации и ее типоразмере, степени защиты, виде климатического исполнения, номере ТУ или ГОСТ. В последнем случае производители ориентируются на ГОСТ 14254 и ГОСТ 15150.

    Преимущества профессионального монтажа

    По правилам, установкой и техобслуживанием вентиляционных систем, а также ЩУВ должны заниматься специалисты с инженерным образованием. Они же несут полную ответственность за неправильный выбор, установку, подключение приборов, а также за содержание технических устройств в ненадлежащем или аварийном состоянии.

    Чтобы правильно определиться с наполнением щита или шкафа, монтажники делают полный мониторинг вентиляционной сети.

    Затем необходимо произвести следующие действия:

    • проанализировать нагрузку;
    • выбрать оптимальную схему;
    • определиться с режимами работы приборов с целью увеличения КПД;
    • подобрать оборудование.

    Сама сборка занимает немного времени: все приборы поочередно монтируют в несколько рядов, провода аккуратно присоединяют к клеммникам и укладывают вдоль линий организованными пучками, затем выводят наружу.

    Профессиональные монтажники имеют опыт установки и эксплуатации ЩУВ, поэтому вряд ли ошибутся с выбором модели и нюансами присоединения приборов. К тому же они хорошо разбираются в схемах систем вентилирования квартир и загородных домов и могут быстро определить наличие в чертеже ошибки.

    Если вовремя не сообразить и подключить приборы по неграмотно составленной схеме – а такое тоже бывает – можно создать аварийную ситуацию.

    Продажей и реализацией щитов и шкафов занимается множество фирм, которые производят или продают вентиляционное, холодильное и отопительное оборудование. Например, в Москве это можно сделать в компаниях «Руклимат», «Ровен», «АВ-автоматика», «Галвент» и др.

    Выводы и полезное видео по теме

    Как выглядят ШУВ в собранном виде, что входит в состав «начинки», как производится крепление приборов и присоединение проводов, можно увидеть в представленных ниже видеороликах.

    Поэтапная сборка и варианты монтажа:

    Видеообзор – образец сборки ШУВ с калорифером:

    Автоматизация вентиляционной или любой другой системы – процесс ответственный и дорогой. Если неправильно подобрать оборудование или произвести сборку, может возникнуть авария в результате которой пострадают люди, например, на химическом предприятии.

    Как минимум, выйдет из строя техника, также дорогостоящая. По этим причинам установкой ЩУВ с начального этапа проектирования и до конца должны заниматься исключительно специалисты.

    Пишите, пожалуйста, комментарии в расположенном ниже блоке. Делитесь информацией, которая может быть полезна посетителям сайта. Задавайте вопросы, расскажите о том, как монтировали щит управления вентиляционной системой собственными руками, размещайте фото по теме статьи.

    Автоматика для управления системой вентиляции

    Автоматизация технических процессов сегодня коснулась практически всех областей человеческой деятельности, как на производстве, так и в быту. Не стали исключением и вентиляционные системы, для управления которыми разработаны специальные устройства, позволяющие максимально оптимизировать их работу.

    Что такое автоматика для вентиляционных систем

    Сегодня автоматические системы управления вентиляцией представлены большим комплексом всевозможных технических приборов. Все они, начиная от термостатов, и заканчивая сложными компьютеризированными модулями, предназначаются для облегчения управления и контроля над работой принудительных вентиляционных систем. Разнообразие оборудования даёт возможность решения задач по обеспечению автоматизации на любом объекте, вне зависимости от его характеристик и назначения.

    Исходя из эксплуатационно-технических требований, возможен различный подход к изготовлению пультов автоматизированного управления вентиляцией:

    • На одних объектах можно обойтись стандартными модулями, выпускаемыми в виде шкафов с установленными в них приборами управления.
    • В других случаях монтажникам приходится вручную собирать комплексы, адаптированные под сложные приточно-вытяжные вентиляции с учетом конкретных задач.

    Разница в подходах обусловлена необходимостью обеспечить эффективное функционирование вентиляции и созданием комфортных условий для жильцов или работников во внутренних помещениях здания, вне зависимости от времени года и внешних погодных условий.

    Важно! В больших торгово-развлекательных комплексах, в учебных и административных зданиях, на больших производствах установка оборудования для автоматизации вентиляционных систем позволяет устранить возможные сбои в работе и минимизировать влияние человеческого фактора.

    Управление работой вентиляционных механизмов происходит с помощью комплекса датчиков, установленных внутри помещений. Одни из них действуют по принципу термостата — с повышением температуры внутри здания автоматически включаются вентиляторы, чем обеспечивается приток свежего воздуха.

    Современные автоматизированные системы оснащаются элементами искусственного интеллекта и более сложными контрольно-измерительными приборами.

    Конструктивно подобные модули состоят из трех групп узлов:

    • Датчики — приборы, передающие информацию об окружающей среде — термостаты, измерители влажности воздуха, газоанализаторы. Собранные данные они передают в анализирующий центр.
    • Центр управления собирает и обрабатывает информацию, поступающую от контрольных датчиков, и на основании полученного анализа выдает команды механизмам управления на изменения режима работы.
    • Исполнительные механизмы — узлы, осуществляющие механические действия. К этой группе относятся: преобразователь частоты вращения вентилятора, сервоприводы для регулировки положения задвижек и т.д.

    Центры управления анализируют соотношение в воздухе кислорода и углекислого газа, процент влажности, при необходимости выдавая команду проветрить помещение. При обнаружении возгорания высокоинтеллектуальная электроника самостоятельно блокирует приток свежего воздуха, препятствуя распространению пожара.

    В обычном режиме автоматика обеспечивает слаженное функционирование всех узлов и механизмов вентиляционных систем без привлечения оператора.

    Компьютеризированные модули передают информацию о режиме работы, о показаниях датчиков на единый пульт управления. Это позволяет оператору, при необходимости, корректировать работу автоматики, и менять настройки в удаленном режиме.

    Обратите внимание! Благодаря использованию автоматики контролировать работу и заниматься обслуживанием вентиляции с установленной автоматикой, может гораздо меньшее количество технических специалистов.

    В зависимости от конкретной ситуации, используется один из 3-х режимов управления приборами:

    • Ручной. Управление вентиляцией осуществляет оператор, находящийся непосредственно в щитовой комнате, либо за удалённым пультом управления.
    • Автономный. Аппаратура работает в соответствии с установленными настройками, вне зависимости от прочих инженерных систем, установленных в здании.
    • Автоматический. Приборы управления интегрированы в общее управление всеми инженерными комплексами здания. Работа вентиляции синхронизирована с прочими приборами и датчиками, расположенными в доме — например, с пожарной сигнализацией, иными аварийными датчиками.

    Таким образом, автоматизированный комплекс исполняет роль управляющего контрольного центра. Он запускает вентиляцию в работу, останавливает её, обрабатывает показания датчиков и устанавливает нужный режим в зависимости от температуры, влажности и прочих параметров.

    Основные задачи автоматики для вентиляции

    Поскольку на современном рынке представлено большое количество всевозможных технических устройств для автоматизации вентиляции, набор их функций также чрезвычайно широк.

    Основные функции модуля управления, оснащенного элементами электронного интеллекта:

    • Поддержание заданных параметров микроклимата внутренних помещений — температуры и влажности воздуха, насыщенности углекислым газом и т.д.
    • Возможность для оператора удаленного управления вентиляторами, дистанционного их включения и отключения.
    • Осуществление автоматизированного контроля над датчиками работы всех узлов и агрегатов вентиляционного оборудования.
    • Самостоятельный перевод оборудования в летний или зимний режим.
    • Контроль над уровнем загрязнения фильтрующих устройств с функцией подачи сигнала о необходимости прочистки.
    • Открывание и закрывание заслонок воздуховодов, регулировка производительности приточных и вытяжных вентиляторов.
    • Прекращение подачи свежего воздуха при срабатывании пожарной сигнализации.
    • Отключение электропитания при аварийных ситуациях — резких скачках или понижении напряжения. Это позволяет предотвратить выход из строя приборов, датчиков и отдельных узлов вентиляционной системы.

    Обратите внимание! Точный перечень функций, которыми снабжен тот или иной автоматизированный модуль, следует узнавать у продавца или производителя.

    Дополнительные функции

    Современные производители для максимально полного удовлетворения запросов покупателей, уделяют особое внимание не только надежности выпускаемого оборудования. Немаловажным фактором в конкурентной борьбе за потребителя является оснащение продукции как можно большим дополнительным функционалом.

    Читайте также:  Что такое мотор-редуктор?

    Сегодня стали доступны такие высокоинтеллектуальные функции, как:

    • Подключение вентиляции к единому электронному диспетчеру управления «умный дом».
    • Управление настройками через интернет-приложения, при помощи Wi-Fi и блютуз.

    Оснащенная современным функционалом автоматическая аппаратура становится понятной и простой в управлении, подобно прочей бытовой технике.

    Как выбрать и установить

    При выборе аппаратуры управления вентиляционными устройствами, особое внимание следует уделить эксплуатационно-техническим характеристикам.

    Важную роль при правильном подборе техники играют сложность системы вентиляционных ходов, количество помещений и их внутренние объемы, а также количество людей, которые находятся в помещении.

    Следует отдавать предпочтение продукции компаний, зарекомендовавших себя на рынке электроники.

    При этом важно узнать, каковы гарантийные обязательства, предусмотрено ли бесплатное сервисное обслуживание. Чем выше уровень качества аппаратуры, тем выше ее стоимость. Однако, не стоит жалеть денег на качественную технику, поскольку она окупит все расходы многолетней безаварийной службой. Идеальным вариантом будет найти такой электронный модуль управления, который совмещал в себе качество сборки, большое количество функций и доступную стоимость. Как показывает практика, подобная аппаратура сегодня встречается среди продукции новых компаний, только выходящих на мировой рынок.

    Это важно! Установкой и подключением систем автоматизации вентиляций должны заниматься только техники со специальными допусками.

    Прошедшие необходимую подготовку специалисты устанавливают аппаратуру в полном соответствии с требованиями технического регламента.

    При самостоятельном подключении возможны ошибки, способные привести к выходу из строя, как отдельных узлов, так и всего оборудования. Также самостоятельно смонтированные комплексы управления не подлежат сервисному обслуживанию, и при поломке покупателю придется ремонтировать их за свой счет.

    Для чего нужна автоматика для управления приточной системой вентиляции

    Автоматическое управление вентиляционными системами оптимизирует их работу. Особенное значение автоматика для вентиляции имеет при возведении больших зданий. Здесь вентиляционные конструкции расположены на больших площадях, и проконтролировать в ручном режиме работу всего оборудования проблематично. Важно правильно настроить автоматическую систему. Это будет гарантией её качественной работы и облегчит управление приборами.

    Конструкция современных систем вентиляции устроена достаточно сложно. Она состоит из множества приборов, каждый из которых имеет своё назначение в обеспечении функционирования системы. Чтобы работа приборов была качественной, её нужно контролировать, добиваясь согласования действий всех агрегатов. Для этого и создана автоматика приточной вентиляции. Она значительно облегчает работу с системой и обеспечивает слаженную работу приборов без непосредственного участия человека.

    Контроль над работой механизмов осуществляется установленными на них специальными датчиками. Это позволяет оператору управлять системой удалённо с единого центра, не контактируя с каждым прибором непосредственно.

    Комплекс датчиков собирает информацию с вентиляционных механизмов и передаёт её на монитор центра управления. Здесь она анализируется специалистом, после чего в случае серьёзных неполадок производится коррекция рабочего процесса.

    Если необходимо, система самостоятельно может осуществлять подключение дополнительных агрегатов и контрольных приборов для оптимизации рабочего режима. Это может понадобиться при изменениях погоды, что может привести к повышенной нагрузке на механизмы, из-за чего последние могут выйти из строя.

    При аварийной ситуации автоматика сама отключит приборы от электропитания.

    Автоматика системы вентиляции оптимизирует работу комплекса, уменьшает количество обслуживающего персонала до 1—2 человек. Благодаря этому снижаются расходы на оплату труда дополнительных работников.

    Центром управления приточной вентиляции является щитовая. Щит обеспечивает три режима её функциональности:

    • ручной;
    • автоматический автономный;
    • автоматический.

    Первый вариант подразумевает ручной контроль над системой. Осуществляется он оператором, дежурящим в щитовой.

    Во втором случае запуск и остановка вентиляции, а также передача функциональных данных осуществляется независимо от показаний, собранных от смежных инженерных систем. Сведения о работе получает диспетчер.

    В полностью автоматическом режимевентиляция включена в общее автоматизированное управление, которое синхронизирует все функции, отвечающие за жизнеобеспечение здания, его системную автоматизацию диспетчеризацию.

    Устанавливать подобные системы непросто, поэтому настройкой центра автоматики должны заниматься только опытные специалисты. Автоматическая вентиляция разделяется на узлы управления:

    • сенсорными датчиками;
    • регуляторами;
    • исполнительной механикой.

    Первая группа приборов занимается сбором информации об окружающей среде — температуре, давлении, уровне влажности и т. п. , а также о состоянии вентиляционных агрегатов. Собранные датчиками данные поступают в центр управления для анализа.

    Информация собирается прессостатами, термостатами и гигростатами. Эти элементы контроля устанавливаются в узловых точках системы и при достижении заданных программой рабочих параметров приборов или окружающей среды соединяют или разъединяют контакты, запуская или останавливая механизмы. Таким образом, поддерживается оптимальный режим температуры и влажности воздуха внутри канала или помещения.

    Параметры контролируются датчиками, фиксирующими влажность, температуру, давление и уровень углекислого газа.

    Вторая группа приборов обрабатывает полученные сведения. Сравнивая показания сенсоров между собой и с заложенными в программе управления нормами, они корректируют работу системы отключением или подключением соответствующих функций, что обеспечивают исполнительные механизмы.

    Корректировка рабочих функций происходит с помощью регуляторов оборотов и частотных преобразователей. Регуляторы оборотов устанавливаются для обслуживания вентиляторов и могут контролировать как один, так и целую их группу. При установке этого узла контроля нужно помнить, что сила тока, проходящая через корректирующий агрегат, не должна в сумме быть больше допустимой для него. Поэтому, выбирая регулятор, нужно обязательно учитывать, на какую максимальную силу тока он спроектирован.

    С помощью частотных преобразователей проводятся безопасные запуски двигателей, мощность которых при этом не ограничена. Но самая важная функция преобразователей — регулировка скорости вращения двигателя с помощью изменяющихся частот напряжения питания. Это обеспечивает плавную регулировку скоростного режима, не влияя на механические характеристики. Процесс такой регулировки вызывает минимальную потерю мощности.

    Такие преимущества частотных преобразователей, несмотря на их высокую стоимость, делают их всё более популярными.

    Приводная часть исполнительной механики состоит из сервоприводов, смесительных узлов и других устройств, делящихся на электрические, пневматические и гидравлические группы.

    Автоматическая система контроля обеспечивает экономию до 20% энергоресурсов благодаря эффективной координации работы всех агрегатов приточной вентиляции. Ей доступны функции:

    • контроля частоты вращения вентиляторов и её регулировка;
    • отслеживания уровня нагрева воды и предупреждение замерзания;
    • контроля над состоянием воздуха и параметрами микроклимата;
    • отслеживания уровня загрязнения фильтров;
    • перевода в состояние неактивного режима отдельных элементов системы;
    • предотвращения короткого замыкания, а также иных неполадок.

    Автоматическое регулирование вентиляции уменьшает влияние человеческого фактора, сводит к минимуму возможность ошибок. Автоматика не нуждается в отдыхе, работает беспрерывно круглые сутки, останавливать её нужно лишь для профилактического контроля и устранения неполадок.

    При проектировании автоматической вентиляции обязательно учитывается её работа при пожаре.

    Если в здании установлена пожарная сигнализация, при возникновении пожара электроприёмники вентиляционных систем должны автоматически прекращать подавать энергию и закрывать противопожарные клапаны на щите управления. Это не допускает к огню кислород и предотвращает его распространение воздуховодами.

    Автоматика должна включать противодымную вентиляцию, а также приспособления для газо- и дымоудаления.

    Автоматика для вентиляционных систем облегчает решение многих задач по управлению вентилированием. Необходимый уровень влажности, оптимальный температурный режим, экономия электричества, повышенный уровень безопасности — всё это обеспечивает автоматическое управление.

    Популярная автоматика для систем вентиляции и кондиционирования

    Автоматику для систем вентиляции и кондиционирования Вы можете заказать с монтажом “под ключ”, позвонив по телефону в Москве: .

    На автоматизацию систем вентиляции возлагаются следующие функции:

    • обеспечение работы системы вентиляции по заданным временным параметрам, т.е. только лишь в рабочее время и т.д.;
    • контроль текущих параметров воздуха (таких как температура и влажность) и их поддержание на требуемом уровне, управление производительностью вентиляционной установки;
    • контроль в режиме реального времени состояния оборудования вентиляционной системы: вентиляторов, фильтров, компрессоров, нагревателей, охладителей, воздушных клапанов, электродвигателей, рекуператоров и пр.;
    • учет часовой наработки и подача сигналов о необходимости текущих профилактических работ (например, промывки фильтров или прочистки воздуховодов);
    • остановка работы или смена алгоритма работы в случае возникновения нештатных (аварийных) ситуаций: задымления или пожара;
    • визуализация параметров технологического процесса при помощи устройств индикации;
    • дистанционное управление работой всей группы вентиляционного оборудования.

    Автоматику систем вентиляции представляют следующие устройства:

    Датчики

    Датчики – они выполняет функцию своего измерителями в схеме автоматики вентиляции. Они осуществляют контроль параметров обрабатываемого воздуха, работы и состояния сетевого оборудования и выдают информацию на шкафы автоматики.

    Делятся на два типа, по методу измерения:

    • термоэлектрические преобразователи или термопары (действие основано на измерении термоэлектродвижущей силы, развиваемой термопарой)
    • термосопротивления или термисторы (действие основано на зависимости электрического сопротивления материала от температуры окружающей его среды). Различают два типа таких датчиков – NTC термисторы (сопротивление материала снижается с повышением температуры) и PTC термисторы (сопротивление материала повышается с повышением температуры).

    Датчики температуры могут быть как комнатного, так и наружного исполнения, канальными (измеряют температуру воздуха в воздуховодах), накладными (измеряют температуру поверхности трубопровода) и так далее. Выбирая датчик нужно обратить внимание на температурные характеристики чувствительного элемента, они должны совпадать с рекомендуемыми в описании регулятора температуры.

    Это электронные устройства, измеряющие относительную влажность по изменению электрической емкости в зависимости от относительной влажности воздушной среды. Датчики влажности делят на два типа: комнатные и канальные. Друг от друга они отличаются конструкцией. При установке датчика нужно выбирать место со стабильной температурой и скоростью движения окружающего воздуха, а также нежелательно располагать датчик возле окон, под прямыми солнечными лучами и вблизи отопительных приборов.

    Различают два типа датчиков давления – аналоговые датчики давления и реле давления. Оба типа датчиков могут измерять давление как в одной точке, так и разность давлений в двух точках. В этом случае датчик называется дифференциальным датчиком давления.

    Примером использования реле давления в климатических системах может послужить датчик давления, служащий для защиты компрессора от слишком низкого или высокого давления фреона. Также, дифференциальные манометры применяются для определения степени засора в фильтрах систем вентиляции. При помощи же аналоговых датчиков определяется давление в точке измерения. Измеренное давление конвертируется в электрический сигнал вторичным преобразователем датчика.

    Принцип работы датчика потока состоит в следующем: в первую очередь измеряется скорость движения газа или жидкости в воздуховоде или трубопроводе, после чего измеренный сигнал преобразуется во вторичном преобразователе в электрический, затем рассчитывается расход газа или жидкости в вычислительном блоке. Наиболее востребованы такие датчики в сфере учета тепловой энергии. По принципу действия первичных преобразователей датчики потока делятся на лопастные устройства, сужающие, турбинные, вихревые, роторные, ультразвуковые и электромагнитные.

    В системах вентиляции и кондиционирования наиболее распространены датчики-реле протока. Они реагируют на скорость газа, создающего напор на лопасть датчика, которая приводит в действие микропереключатель с сухим контактом. В тот момент, когда скорость потока достигает заданного порога переключения, происходит замыкание контактов. Когда же скорость потока падает ниже этого порога, контакты размыкаются. Порог переключения можно регулировать.

    • Датчики концентрации углекислого газа

    По содержанию углекислого газа в воздухе принято оценивать газовый состав воздуха в помещении. В системе вентиляции и кондиционирования концентрация углекислого газа может быть объектом регулирования. (Нормой содержания углекислого газа в воздухе считается значение от 600 до 800 ppm).

    Выбирают датчики на основе следующих данных:

    • условия эксплуатации
    • диапазон
    • требуемая точность измерения физического параметра

    Шкаф автоматики

    Шкаф автоматики – является главной управляющей составляющей в автоматизированной системы вентиляции.

    Функциональные возможности:

    • автоматическое регулирование температуры приточного воздуха в зимний период;
    • автоматическое регулирование температуры обратного теплоносителя в дежурном режиме;
    • автоматическая защита калорифера от замораживания по воде и по воздуху;
    • контроль работоспособности приточного вентилятора (по термоконтакту двигателя, датчику-реле перепада давления);
    • контроль запыленности воздушного фильтра (по датчику-реле перепада давления);
    • контроль положения воздушного клапана (по состоянию концевого выключателя лектропривода);
    • отключение вентиляционной системы при пожаре с сохранением работоспособности цепей защиты от замораживания в активном состоянии;
    • работа системы по индивидуальному расписанию;
    • сигнализация нормальной работы и аварийного состояния на щите автоматики

    Контроллеры

    Контроллеры – их применение наиболее актуально, когда важно:

    • управление переходными процессами в реальном времени с использованием мощных микропроцессоров;
    • возможность сохранения событий во флэш-памяти (сигналов тревоги, показателей температуры, давления) в течение продолжительного времени;
    • настраиваемый вид пользовательского интерфейса;
    • обмен данными с большинством широко используемых стандартов связи посредством встроенного мультипротокольного программного обеспечения;
    • гибкость использования различных функций и алгоритмов,

    Универсальные конфигурируемые контроллеры для систем кондиционирования

    Система конфигурируемых контроллеров представляет собой результат десятилетий работы в области проектирования и производства конфигурируемых контроллеров для устройств вентиляции и кондиционирования воздуха. Система составлена из конфигурируемых контроллеров – как для панельного монтажа, так и для монтажа на направляющих стандарта DIN, – локальных и дистанционных пользовательских интерфейсов, интерфейсов связи, входных/выходных модулей расширения и приводов электронных ТРВ. Конфигурируемые контроллеры могут быть адаптированы к широкому диапазону вариантов применения за счет настройки различных параметров для устройств охлаждения/отопления: воздух/вода, вода/вода, воздух/воздух, крышные агрегаты, двухконтурные системы, максимум с 3-мя компрессорами на контур.

    Читайте также:  Что такое сертификация оборудования?

    Преимущества:

    • исключительно компактная конструкция;
    • возможность подключения к дистанционному терминалу;
    • высокая надежность;
    • управление электронными ТРВ;
    • эргономичная и высокоэффективная индикация с использованием пиктографических изображений – «иконок»;
    • простота электромонтажа;
    • модульная архитектура.

    Основные функции:

    • пропорциональное регулирование температурой обратной и выходной воды/воздуха с использованием синхронизированной логики;
    • пропорционально-интегральное регулирование;
    • ступенчатое регулирование в каждом контуре;
    • управление конденсатором/испарителем;
    • управление с подключением различных обмоток;
    • автоматическое поддержание низкого давления;
    • постепенное размораживание в режиме отопления;
    • ступень электроподогрева как автономная дополнительная функция размораживания испарителя;
    • контроль продолжительности работы компонентов и выдача предупреждений;
    • возможность работы с частичной нагрузкой по высокому давлению в режиме охлаждения;
    • профилактическая вентиляция при включении в условиях высокой наружной температуры воздуха;
    • останов компрессора при низких температурах наружного воздуха;
    • работа с частичной нагрузкой по низкому давлению (в режиме отопления);
    • низкий уровень шума при работе в режиме охлаждения и обогрева;
    • изменение установки и Включение/Отключение по заданному временному интервалу;
    • управление приводом электронного ТРВ;
    • регистрация событий: тревог по принципу «первый пришел – первый вышел»;
    • регистрация данных по испарителю, а также температуры конденсации и давления (последние 100 тревог);
    • ключ программирования – загрузка файлов зарегистрированных данных в компьютер;
    • отправка сигналов тревоги в виде SMS;
    • автоматическая настройка;
    • самодиагностика;
    • автоматическое переключение;
    • функция интеллектуального размораживания;
    • ключ программирования.

    Регуляторы

    Регулятор температуры обеспечивает управление исполнительными механизмами по показаниям всевозможных датчиков и является одним из основных элементов системы. Простейшим типом регуляторов являются термостаты, они предназначены для контроля и поддержания заданной температуры в различных технологических процессах. Термостаты разделяются по принципу действия, способу применения и конструкции. По принципу действия они делятся на:

    • биметаллические
    • капиллярные
    • электронные

    Принцип действия биметаллических термостатов основан на срабатывании биметаллической пластины под воздействием температуры. Их применяют в основном для защиты электронагревателей от перегрева и поддержания заданной температуры в помещении.

    Капиллярные термостаты используют для контроля температуры теплообменников в системах кондиционирования и вентиляции и предотвращения их разрушения из-за замерзания теплоносителя. Составляющие такого термостата – капиллярная трубка, заполненная фреоном R134A, соединенная с диафрагмированной камерой, которая, в свою очередь, механически связана с микропереключателем.

    В системах вентиляции капиллярный термостат угрозы замораживания может запускать следующие процессы:

    • остановка вентилятора
    • закрытие заслонки наружного воздуха
    • запуск циркуляционного насоса теплоносителя
    • включение аварийного сигнала

    Для помещений в глубине зданий применяют электронные термостаты, имеющие релейный выход. Поддерживать заданную температуру термостаты могут как по встроенному, так и по выносному датчику.

    Беспроводные комнатные терминалы – беспроводное решение для управления климатическими параметрами (температурой и влажностью) в зданиях. Такой подход гарантирует энергосбережение и оптимизацию системы управления. Устройство оптимально подходит для систем кондиционирования воздуха (крышных кондиционеров, приточно-вытяжных установок), и может быть адаптировано для других систем (например, для теплого пола).

    Система состоит из:

    • терминала со встроенными датчиками температуры и влажности;
    • датчика температуры и влажности;
    • точки доступа, используется для сбора информации с беспроводных терминалов и датчиков и передачи ее в систему управления зданием, которая строится либо на основе контроллера и сервера системы диспетчеризации, либо с использованием центрального блока управления;
    • повторителя, который обеспечивает расширение зоны покрытия радиосигналом для обеспечения обмена данными между беспроводными терминалами и датчиками, расположенными в удаленных местах объекта.

    Преимущества:

    • Гибкость: Возможность легко менять структуру управления инженерным оборудованием, например, в случае необходимости изменения планировки супермаркета или офиса без внесения изменения в существующие коммуникационные каналы.
    • Упрощенное переоснащение исторических или иных зданий, где затруднены или недопустимы строительные работы, связанные с вскрытием полов, стен, и т.д.
    • Более низкая стоимость монтажа и эксплуатации.
    • Упрощенная пуско-наладка системы.
    • Интеграция с большинством распространенных систем управления зданием BMS.
    • Поддержание заданных параметров в индивидуальных зонах помещения (способствует снижению энергозатрат).
    • Сотовая структура обмена данными между точками доступа и устройствами обеспечивает высокую надежность передачи данных внутри сети.

    Исполнительные механизмы

    Исполнительные механизмы – относятся электроприводы воздушных клапанов и заслонок, вентиляторов, насосов, компрессорных установок, а также калориферы, охладители, задвижки, заслонки, электроприводыи прочее оборудование.

    Исполнительным механизмом называют приводную часть исполнительного устройства. Исполнительные механизмы делятся на гидравлические, электрические и пневматические. В частности электрические могут быть соленоидные (электромагнитные) и с электродвигателями (электрические)

    Клапаны двухходовые и трехходовые делятся на резьбовые и фланцевые. Клапаны с фланцевым подключением как правило комплектуются монтажным набором с уплотнителем, а с резьбовым – фитингами и уплотняющими шайбами. В качестве проходных, изменяющих расход рабочей среды используются двухходовые клапаны. Они монтируются в системе трубопроводов или воздуховодов так, чтобы направление потока совпадало с направлением стрелки на корпусе клапана. Типичный пример использования такого клапана – контур с локальным циркуляционным насосом.

    Трехходовые клапаны служат в качестве смесительных, разделительных и проходных клапанов. Эти клапаны широко применяются в системах холодоснабжения. Клапаны “бабочка” монтируются на фланцевом соединении. Рабочая часть таких клапанов – укрепленный на вращающейся оси диск. Величина просвета между диском и внутренней поверхностью клапана меняется в зависимости от угла поворота оси. Клапаны такой конструкции чаще всего используются в жидкостных трубопроводах большого диаметра. На воздуховодах как круглого, так и прямоугольного сечения применяются воздушные дроссельные заслонки. Они используются для регулирования воздушных потоков при небольшом статическом давлении. Обратные клапаны нужны для предотвращения движения потока жидкости или газа в обратном направлении, в частности их используют в жидкостных и всасывающих трубопроводах чиллеров и автономных кондиционеров.

    • Электроприводы воздушных заслонок

    Для управления воздушными заслонками часто недостаточно вручную переключать положения клапанов, поэтому используются электроприводы, управляемые дистанционно или автоматически. Электроприводы классифицируются по:

    • величине питающего напряжения (24В AC/DC или 230В 50Гц)
    • величине крутящего момента (необходимое значение определяется площадью воздушного клапана, на который устанавливается привод)
    • способу управления (плавное, двухпозиционное или трехпозиционное)
    • способу возврата в исходное положение (при помощи пружины или с помощью реверсивного электродвигателя)
    • наличию дополнительных переключающих контактов

    Автоматическое управление вентиляцией в помещении

    Верный воздухообмен в помещении формирует комфортные условия не только для людей, но всех предметов и растений в нем. Добиться этого ручным методом тяжело, по причине того, что вы не сможете круглосуточно следить за показаниями устройств. Время от времени вам будет через чур жарко, позже холодно, после этого душно и не хватать воздуха. Решить такие неприятности разрешает лишь автоматическое управление вентиляцией, о которой и поболтаем в статье.

    Основные преимущества

    Применение автоматических средств управления воздухообменом в помещении позволяет снизить затраты на его охлаждение и нагрев практически на 20%. Это достаточно внушительное число, исходя из этого мы рекомендуем обратить внимание на наши советы. Основными задачами таких систем регулирования вентиляцией есть поддержка заданных климатических параметров и управление ними (читайте кроме этого статью ‘Опробование вентиляции: тестируемые величины и нормативные требования’).

    Кроме этого вы сможете:

    • регулировать частоту вращения вентилятора,
    • защитить водяного калорифера от мороза,
    • поддержать заданные параметры воздуха,
    • выводить на экран либо индикацию степень загрязнения фильтров.

    Из чего состоит система автоматической вентиляции

    Как и любое техническое устройство, она содержит в себе основные элементы, каковые оказывают помощь ей снабжать стабильную работу. Рассмотрим их детальнее:

    Датчики
    1. Употребляются для получения информации о состоянии регулируемого объекта в настоящем времени.
    2. Вы сможете с их помощью осуществлять обратную связь с системой регулирования объектом по каждому параметру, а также, температуре, давлении, влажности.
    3. При выборе датчиков необходимо брать во внимание условия их эксплуатации, диапазон работы и требуемую точность измерений.

    Их цена возможно большой, исходя из этого поразмыслите перед их установкой об их количестве.

    РегуляторыЯвляются одними из основных элементов системы автоматизации, каковые снабжают управление аккуратными механизмами в зависимости от показаний разных датчиков.
    Аккуратные механизмыОни являются устройства различного типа:

    • электрические,
    • механические,
    • гидравлические.

    Сейчас рассмотрим контроллеры управления вентиляцией:

    1. Температурные бывают:
    • наружными – устанавливают на подветренной стороне одного из углов здания, отойдя от земли 2/3 его высоты,
    • комнатными – монтаж возможно проводить своими руками в месте нейтральном от холода и тепла на высоте 1,5 м от поверхности пола,
    • канальными (для определения температуры воздуха в воздуховоде) – устанавливаются перпендикулярно потоку,
    • накладными на трубопровод (определяют температуру его поверхности).
    1. Устройства для определения влажности изготавливают комнатного и канального выполнения. Это блок с электронным прибором, который измеряет относительную влажность и преобразует после этого данные в электронный сигнал.

    Устанавливать таковой датчик следует в месте, где имеется постоянная температура окружающей среды и его скорость движения.

    Совет: не размещайте его рядом с отопительными устройствами, вентиляционными потоками, раскрывающихся окон, и защитите устройство от прямых солнечных лучей. Не рекомендуем создавать монтаж устройств в нечистой либо агрессивной среде.

    1. Для наблюдений за давлением применяют аналоговые устройства и реле, каковые смогут измерять его и в одной точке, и по разности параметров в двух точках.

    Инструкция требует выбирать место для монтажа так, дабы он не подвергалось вибрациям.

    Совет: располагайте датчик в пространстве в соответствии с технической документацией.

    1. За наблюдением за скоростью – нужны для измерения скорости движения среды в воздуховоде. После этого полученный сигнал преобразуется в электрический, по окончании чего в вычислительном блоке рассчитывается нужный расход с учетом сечения канала.

    Элементы автоматической системы вентиляции

    В стандартной комплектации щит управления вентиляцией снабжает:

    • регулирование температурного диапазона,
    • управление воздушной заслонкой,
    • регулирование работой приточного вентилятора, а также скорости,
    • пуск вентиляционной установки.

    При изготовлении щитов учитывается не только уровень качества сборки, но и удобство эксплуатации изделия. К примеру, простые неоновые лампы заменяются современными светодиодными матрицами, снабжающие броское и равномерное свечение, и не имеют подсветки, в то время, когда лампы отключены.

    В качестве материала может употребляться металл и пластик, имеющий защиту класса IP65. Последние в большинстве случаев устанавливают в местах, где имеется высокие требования к дизайну.

    Сердцем любой системы автоматизации есть электрический щит, в котором в большинстве случаев устанавливают систему управления вентиляцией. Самая несложная складывается из выключателя с индикатором, давая возможность включать и выключать вентилятор.

    Но значительно чаще автоматика руководит:

    • воздушным клапаном,
    • отслеживает чистоту фильтра,
    • при понижении температуры наружного воздуха, поступающего в воздуховоды, включает калорифер.

    Исходя из этого для облегчения ее работы нужна установка многих устройств, например, термостатов, гигростатов, датчиков давления.

    При выборе типа вентиляции у себя в доме либо квартире, имейте в виду, что она возможно:

    • приточной – работает лишь на всасывание наружного воздуха и передачу его по воздуховодам в помещения,
    • вытяжной – употребляется лишь для вывода отработанного воздуха из комнат наружу,
    • приточно-вытяжной – может раздельно делать забор наружного воздуха и выводить отработанный, и работать на приток и оттекание в один момент.

    Совет: не торопитесь бежать в магазин за элементами той либо другой системы, лучше все пристально вычислите, дабы не платить лишние деньги за ненужные устройства.

    Приточно-вытяжная система вентиляции

    Она получается при объединении двух типов систем – приточной и вытяжной. Не смотря на то, что он и громоздкая, и более сложная в монтаже, но как раз с ее помощью вы сможете самым действенным образом наладить воздухообмен в помещении. Вследствие этого данная система и пользуется громадной популярностью.

    Система управления вентиляцией позволяет без проблем нагнетать свежий воздушное пространство в помещения и удалять отработанный. Практически в считанные минуты такое оборудование всецело обновляет воздушное пространство кроме того в громадных по площади производственных помещениях.

    Наряду с этим мощность установки в обязательном порядке шепетильно подбирается по подаче и оттоку воздушных масс, дабы входило и выходило однообразное количество в определенный момент времени. В случае если этого не сделать, в помещении появится сквозняк, и эффект «рукоплещущих дверей», в то время, когда покинутые незакрытыми двери сами захлопываются с сильным шумом.

    Мы рекомендуем при установке в помещении приточно-вытяжной вентиляции не включать ее на полную мощность. Достаточно приток либо вытяжку.

    В случае если запустить вытяжную вентиляцию, свежий воздушное пространство начнет поступать естественным методом через щели в дверях и окнах. При запуске приточной вентиляции в помещении начинает создаваться избыточное давление, что заставляет отработанный воздушное пространство покидать его через форточки, фрамуги и окна.

    Вывод

    Установка автоматической системы вентиляции в помещении может ‘настойчиво попросить’ определенных знаний и навыков. В большинстве случаев это относится установки и подключения датчиков и щита управления, от которых и зависит ее обычная работа (см.кроме этого статью ‘Автоматика для вентиляции: функции, особенности, возможности’).

    Видео в данной статье окажет помощь отыскать вам дополнительную данные по данной тематике.

    Ссылка на основную публикацию