Как работает устройство плавного пуска?

Как работает устройство плавного пуска?

Данный раздел посвящен теоретическим основам частотного регулирования и принципам работы устройства плавного пуска.

Принцип работы преобразователя частоты

Частотный преобразователь – устройство, позволяющее осуществлять регулирование скорости вращения электродвигателей посредством изменения частоты электрического тока.

Для понимания процесса частотного регулирования для начала необходимо вспомнить из курса электротехники принцип работы асинхронного электродвигателя.

Вращение вала электродвигателя происходит за счет магнитного поля создаваемого обмотками статора. Синхронная частота вращения магнитного поля зависит от частоты напряжения питающей сети f и выражается следующей зависимостью:

где p – число пар полюсов магнитного поля.

Под действием нагрузки частота вращения ротора электродвигателя несколько отличается от частоты вращения магнитного моля статора вследствие скольжения s:

Следовательно частота вращения ротора электродвигателя представляет собой зависимость от частоты напряжения питающей сети:

Таким образом требуемую частоту вращения вала электродвигателя n p можно получить путем изменения частоты напряжения сети f. Скольжение при изменении частоты вращения не увеличивается, а соответственно потери мощности в процессе регулирования незначительны.

Для эффективной работы электропривода и обеспечения максимальных значений основных характеристик электродвигателя требуется вместе с частотой изменять и питающее напряжение.

Функция изменения напряжения в свою очередь зависит от характера момента нагрузки. При постоянном моменте нагрузки M c = const напряжение на статоре должно регулироваться пропорционально частоте:

Для случаев вентиляторного режима:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, плавное регулирование частоты обеспечивается одновременным регулированием частоты и напряжения на статоре асинхронного двигателя.

Рис 1. Схема частотного преобразователя

На рис. 1. представлена типовая блок-схема низковольтного преобразователя частоты. В нижней части рисунка для каждого блока наглядно изображены графики входных и выходных напряжений и токов.

Сначала напряжение сети (UBX) поступает на вход выпрямителя (1). Далее для сглаживание выпрямленного напряжения (UВЫПР) применяется конденсаторный фильтр (2). Затем уже постоянное напряжение (Ud) подается на вход инвертора (3), где происходит преобразование тока из постоянного обратно в переменный, формируя тем самым выходной сигнал с необходимыми значениями напряжения и частоты. Для получение сигнала синусоидальной формы применяются сглаживающий фильтр (4)

Для более наглядного понимания принципа работы инвертора рассмотрим принципиальную схему частотного преобразователя на рис. 2

Рис. 2 – принципиальная схема низковольтного преобразователя частоты

В основном в инверторах применяется метод широтно-импульсной модуляции (ШИМ). Принцип данного метода заключается в попеременном включении и выключении ключей генератора, формируя импульсы различной длительности (рис. 3). Синусоидальный сигнал получается за счет индуктивности двигателя или применения дополнительного сглаживающего фильтра.

Рис. 3. Выходной сигнал преобразователя частоты

Таким образом, управляя процессом включения-выключения инверторных ключей, мы можем формировать выходной сигнал нужной частоты, а следовательно управлять технологическими параметрами механизма путем изменения частоты вращения привода.

Теория и принцип работы устройства плавного пуска

В связи с особенностями переходных процессов происходящих во время пуска электродвигателя токи обмоток достигают 6-8 кратной величины номинального тока электродвигателя, а вращающий момент на его валу достигает 150-200% от номинального значения. Как следствие это увеличивает риск поломки механической части двигателя, а также приводит к падению напряжения питающей сети.

Для решение данных проблем на практике применяется устройства плавного пуска электродвигателей, обеспечивающие постепенное увеличение токовой нагрузки.

Помимо снижения токовых нагрузок мягкие пускатели позволяют: .

  • Снизить нагрев обмоток двигателя;
  • Снизить просадки напряжения во время пуска;
  • Обеспечить торможение и последующий запуск двигателя в установленный момент времени;
  • Снизить гидроудары в напорных трубопроводах при работе в составе привода насоса;
  • Снизить электромагнитные помехи;
  • Обеспечить комплексную защиту электродвигателя при пропадании фазы, перенапряжении, заклинивании и пр;
  • Повысить надежность и долговечность системы в целом.

Принцип работы УПП

Типовая схема устройства плавного пуска представлена на рис. 1

Рис. 1. Типовая схема устройства плавного пуска

Изменением угла открытия тиристоров осуществляется регулирования выходного напряжения УПП. Чем больше угол открытия тиристора – тем больше величина выходного напряжения, питающего электродвигатель.

Рис. 2. Формирование выходного напряжения УПП

Принимая во внимание то что величина крутящего момента асинхронного электродвигателя пропорциональна квадрату напряжения, то снижение напряжения снижает величину вращающего момента вала двигателя. При помощи такого метода пусковые токи электродвигателя снижаются до величины 2. 4 IНОМ, при этом время разгона несколько увеличивается. Наглядное изменение механической характеристики асинхронного электродвигателя при понижении напряжении показано на рис. 3

Рис 3. Механические характеристика двигателя

Снижение токовой нагрузки в процессе мягкого пуска электродвигателя наглядно показаны на рис. 4.

Рис. 4. Диаграмма плавного пуска асинхронного электродвигателя показана

На рис. 1. продемонстрирована типовая схема устройства плавного пуска однако стоит отметить, что реальная схема мягкого пускателя будет завесить в первую очередь от условий его эксплуатации. Например, для бытового бытовой инструмента и электродвигателя привода промышленной дробилки требуются различные устройства плавного пуска. Важнейшими параметрами, определяющими режимы работы устройств плавного пуска, являются время пуска и максимальное превышение по току.

В зависимости от этих параметров выделяют следующие режимы работы устройств плавного пуска:

  • Нормальный: пуск 10-20 секунд, ток при пуске не более 3,5 Iном.
  • Тяжелый: пуск порядка 30 секунд, тока при пуске не превышает 4,5 Iном
  • Сверхтяжелый: время разгона не ограничено, системы с большое инерцией, пусковой ток в диапазоне 5,5…8 Iном

Устройства плавного пуска можно разделить на следующие основные группы:

1. Регуляторы пускового момента
Данный тип устройств осуществляет контроль только одной фазы трехфазного двигателя. Контроль одной фазой дает возможность снижать пускового момент электродвигателя двигателя, но при этом снижение пускового тока происходит незначительное. Устройства данного типа не могут применяться для уменьшения токовых нагрузок в период пуска, а также для пуска высокоинерционных нагрузок. Однако они нашли применение в системах с однофазными асинхронными электродвигателями.

2. Регуляторы напряжения без обратной связи
Данный тип устройств работает по следующему принципу: пользователь задает величину начального напряжения и время его нарастания до номинальной величины и наоборот. Регуляторы напряжения без обратной связи могут осуществлять контроль как двух так и трех фаз электродвигателя. Такие регуляторы обеспечивают снижение пускового тока снижением напряжения в процессе пуска.

3. Регуляторы напряжения с обратной связью
Данный тип УПП представляет собой более совершенную модель описанного выше устройств. Наличие обратной связи по позволяет управлять процессом увеличения напряжения добиваясь оптимального режима пуска электродвигателя. Данные о токовой нагрузке позволяет также организовать комплексную защиту электродвигателя от перегрузки, перекоса фаз и т.п.

4. Регуляторы тока с обратной связью
Регуляторы тока с обратной связью представляют собой наиболее совершенные устройства плавного пуска. Принцип работы основан на прямом регулировании тока а не напряжения. Это позволяет добиться наиболее точное управление пуском электродвигателя, а также облегчает настройку и программирование УПП.

Устройство плавного пуска электродвигателя. Как это работает.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами “номинал в номинал”. Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска

При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Главным параметром УПП является величина Iном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил. Тогда Iном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

некоторая электротехника может самопроизвольно отключаться;

возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Читайте также:  Как работать отбойным молотком?

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Обзор устройств плавного пуска –применение, принципы действия, разновидности, схемы включения

Проблема пускового тока

Одна из особенностей работы асинхронного двигателя, которую можно назвать недостатком – большой пусковой ток при старте, который может превышать номинальный в 8 и более раз. Это обусловлено принципом его работы – при подаче на него номинального напряжения он стремится сразу выйти на полную мощность. Данная особенность проявляется в большой мере при пуске через линейный контактор, это также называют прямым пуском двигателя.

В некоторых механизмах принципиально важно, чтобы пуск был плавный, без рывков и ударов. Это касается прежде всего технологического оборудования, у которого высокий момент инерции при запуске. Например, тяжелые маховики и конвейеры с продукцией, а также мощные насосы и вентиляторы.

Иными словами, большой пусковой ток и большой момент инерции механической нагрузки на валу двигателя – взаимосвязанные вещи, от который часто необходимо избавляться.

Кстати, в некоторых странах законодательно запрещено включать электродвигатели большой мощности прямой подачей напряжения, поскольку это создает помехи, падение напряжения и перегружает электросети, что может вызвать проблемы у других потребителей и даже стать причиной аварий.

Как обеспечить плавный пуск двигателя

Существуют несколько вариантов уменьшения пускового тока, которые используются на практике.

1. Применение преобразователей частоты. В этом случае можно обеспечить сколь угодно долгий разгон, а также ограничить превышение номинального тока, например, на уровне 110%. Это лучший способ плавного пуска, однако, он используется далеко не всегда, поскольку преобразователь частоты – дорогостоящее электронное устройство, которое имеет множество функций. Если нужно только ограничение пускового тока и плавный разгон, преобразователь частоты будет избыточен, и большинство его функций останутся не востребованы.

2. Схема «Звезда – Треугольник». Двигатель при этом должен быть таким, чтобы номинальное напряжение питания при включении его обмоток «треугольником» было 380 В. В этом случае двигатель запускается в два этапа. На этапе разгона обмотки включаются «звездой». Таким образом получается, что 380 В подается на схему, которая для нормальной работы требует напряжения порядка 660 В. Поскольку двигатель в «звезде» работает при пониженном напряжении, разгон (выход на рабочие обороты) получается сравнительно плавным. На втором этапе обмотки включаются «треугольником», и двигатель выходит на свою номинальную мощность. Минус этого способа – разгон получается ступенчатым, а пусковые токи могут принимать большое значение.

3. Когда речь идет только о минимизации пускового тока, наиболее оптимальный вариант – использование устройства плавного пуска (softstarter).

Ниже рассмотрим принципы работы устройств плавного пуска (УПП) и схемы их включения.

Как работает устройство плавного пуска

Рассмотрим пошагово, какие процессы происходят при работе УПП, и какие регулировки влияют на его работу.

В минимальной конфигурации устройства плавного пуска (УПП) имеют три регулировки – время разгона, время торможения, и напряжение пуска.

При включении действующее напряжение на двигателе определяется регулировкой напряжения пуска, которое обычно составляет 30…80 % от номинала. Понижение напряжения и его регулировка производится тиристорами, которые открываются (пропускают ток) только в части полупериода сетевого напряжения. Фазой открытия тиристоров можно менять напряжение на двигателе.

Таким образом, регулируя фазу открытия тиристоров, можно менять ток и крутящий момент двигателя.

В зависимости от конкретного случая может потребоваться большой начальный момент, чтобы двигатель мог тронуться с места. Но для уменьшения пускового тока начальное напряжение лучше устанавливать минимально возможным.

При большом времени разгона пусковой ток будет минимальным. Однако, следует выбирать его оптимальным, обычно 10…20 секунд, в зависимости от типа нагрузки. При слишком большом времени разгона возможен излишний нагрев тиристоров. Критерием оптимального времени разгона служит время выхода двигателя на номинальные обороты и номинальный рабочий ток. По истечении времени разгона включается контактор байпаса, который может быть установлен внутри УПП, или быть внешним. Во время работы двигателя на номинальном режиме весь питающий ток идет только через этот контактор, при этом тиристоры в работе не участвуют.

Если пришел сигнал на остановку двигателя, контактор байпаса выключается. Вступают в работу тиристоры, которые работают в обратном режиме – постепенно уменьшают фазу (время открытия в течение полупериода) с максимальной до нуля. Если время торможения не важно, то можно его установить минимальным (0-2 секунды), это увеличит ресурс тиристоров, и улучшит тепловой режим электрощита в целом. Двигатель будет останавливаться на выбеге, к ак при питании через обычный контактор. Но если важно исключить гидроудар, или плавно замедлить движение объектов без их резкой остановки и падения, то функция плавной остановки будет очень полезной.

В УПП также могут присутствовать такие регулировки: управление крутящим моментом двигателя, конечное напряжение при останове, номинальный ток двигателя, ограничение пускового тока. Современные УПП имеют ЖК-дисплей и кнопки управления, которые позволяют конфигурировать несколько десятков различных параметров для тонкой настройки.

Схемы включения

Как во всех подобных устройствах, в схеме включения УПП имеется силовая часть, и часть управления.

Силовая часть схемы – это та часть, через которую проходит ток питания двигателя. Ток двигателя поступает через силовые клеммы L1, L2, L3 (или R, S, T) на входы тиристоров или контактора байпаса, и затем через выходные клеммы T1, T2, T3 (U, V, W) подается на двигатель.

Схема управления включает в себя в основном цепи запуска и остановки. Напряжение питания цепей управления обычно составляет 24…220 В, и может быть внешним, либо браться из УПП.

С участием УПП можно реализовать схему плавного пуска электродвигателя с реверсом. Для этого нужно на входе установить реверсивный контактор по классической схеме. Важно сделать блокировку для предотвращения реверса двигателя во время его вращения.

Допускается запускать УПП и начинать вращение двигателя подачей питания на цепи управления и силовые цепи. Это может быть удобно при дистанционной подаче силового питания. Однако, при этом следует предусмотреть меры безопасности – обслуживающий персонал должен понимать, что при подаче питания на УПП двигатель может начать вращаться.

Пример схемы

Рассмотрим для примера схему включения УПП ABBPSTX.

В силовую часть входят: автомат защиты двигателя (вводной), тиристоры и контактор байпаса (внутри УПС), и собственно двигатель.

Для питания цепей управления подается фазное напряжение 220В и нейтраль на клеммы 1, 2. В УПП имеется встроенный блок питания, который вырабатывает напряжение 24 В для питания органов управления. Допускается также применение внешнего БП 24 В, при этом напряжение на клеммы 1, 2 подавать не нужно.

При соответствующем подключении и настройках кнопки могут быть как с фиксацией, так и без. Управление может производиться не только с кнопок, но и через контакты реле или контроллера.

Имеются и другие входы для различных режимов работы, а также три выходных реле с сухими контактами, которые могут использоваться по необходимости для включения дополнительных контакторов и индикации.

Защита

В дешевых УПП часто не реализована защита от перегрузки по току, перегреву и короткому замыканию. В таких случаях необходимо устанавливать нужную защиту и включать УПП по схеме, рекомендованной производителем.

В состав защиты могут входить:

  • Мотор-автомат (автомат защиты двигателя),
  • Полупроводниковые предохранители, либо защитные автоматы с характеристикой «В»,
  • Тепловое реле,
  • Короткое либо межвитковое замыкание в обмотках двигателя,
  • Контактор аварийной цепи, выключающий питание УПП при срабатывании внутреннего аварийного реле либо нажатии кнопки «Аварийный останов».

Пример неправильной установки защиты, в результате которой произошел пожар:

Следует сказать, что даже если в УПП входят все виды защит, необходимо на вводе силового питания и питания схемы управления устанавливать соответствующие защитные автоматы либо предохранители.

Двухфазные УПП

В некоторых бюджетных моделях управление выходным напряжением происходит только по двум фазам. Таким образом, происходит экономия на тиристорах и на одном контакте контактора байпаса.

Это решение имеет право на жизнь, и главный плюс таких УПП – цена.

Однако, имеются минусы, о которых стоит знать:

  • При запуске и торможении происходит перекос фаз, который приводит к дополнительному нагреву двигателя,
  • Пусковой ток по «прямой» фазе почти не уменьшается,
  • Постоянное присутствие фазного напряжения на двигателе представляет опасность для персонала.

Заключение

УПП нашли достойное место там, где не нужна регулировка скорости вращения двигателя, но важным аспектом является минимизация пусковых перегрузок питающей сети и приводимых в движение механизмов. Однако, в последнее время их всё больше вытесняют преобразователи частоты, которые имеют гораздо более широкий спектр возможностей управления двигателем.

Устройство плавного пуска — что и как?

Устройства плавного пуска электродвигателей являются статическими электронными или электромеханическими устройствами, предназначенными для плавного ускорения и плавного замедления, а также для защиты трехфазных индукционных электродвигателей.

Устройства плавного пуска УПП осуществляют действия по снижению величины пускового тока и помогают осуществить согласование крутящего момента двигателя и момента нагрузки.

Принцип работы устройства плавного пуска

Управление напряжением, подаваемым на двигатель, осуществляется посредством изменения угла открытия тиристоров. В устройстве находятся два встречно-включенных тиристора, предназначенных для положительного и отрицательного полупериодов. Сила тока в третьей фазе, оставшейся без управления складывается из токов фаз под управлением.

После осуществления настройки, значение вращающего момента при пуске машины оптимизируется до предельно низкой величины пускового тока. Значение тока электродвигателя уменьшается параллельно значению установленного пускового напряжения на пуске. Величина пускового момента уменьшается в квадратичном отношении к напряжению.

Уровень напряжения осуществляет контроль пускового тока и момента двигателя при запуске и остановке двигателя.

Наличие в устройстве байпасных контактов, которые шунтируют тиристоры, способствует понижению тепловых потерь в тиристорах, а соответственно понижению нагрева всего устройства. Встроенная электронная дугогасительная система защищает контакты в случае появления повреждений в результате непредвиденных сбоев в работе, например, при прерывании подачи напряжения, возникновении вибрации или дефекте контактов.

Рис 1. Внешний вид устройства плавного пуска 3RW30

Рис 2. Внутренняя схема устройства управления плавным пуском 3RW30

Баланс полярности

Недостаток 2-фазного управления в устройстве плавного пуска асинхронного двигателя проявляется в появлении постоянного тока, вызванного фазовой отсечкой и наложением фазных токов, при которых возникает сильный акустический шум, выделяемый электродвигателем.

Применение метода «баланс полярности» значительно понижает влияние значений постоянного тока во время разгона двигателя, соответственно снижается акустическая характеристика запуска, достигается это благодаря балансированию полуволн различной полярности в процессе разгона двигателя.

Интерфейс устройства

Интерфейс устройства плавного пуска УПП «человек-машина» разрешает производить настройку параметров, существенно облегчая и упрощая осуществление процесса запуска и эксплуатации двигателя. Встроенная функция управления насосом предотвращает возникновение гидравлического удара.

Рис3. Интерфейс устройства плавного пуска

Рис. Б. прикладной модуль AS-интерфейса

Рис 4. Устройство плавного пуска электродвигателя — схема фидерной комбинации с AS-интерфейсом

Интерфейс состоит из двух дисплеев с сегментными индикаторами и ЖК-дисплеем, позволяющим обеспечить видимость на значительном расстоянии, включает в свой состав описание параметров и сообщений.

В возможности аппаратуры входит выбор режима программирования и языковые опции. Осуществляет копирование параметров из одного устройства в другое, увеличивая скорость программирования, повышая надежность оборудования и получая возможность корректирования и внесения идентичных параметров на одинаковых машинах.

Читайте также:  Как подобрать пластинчатый теплообменник?

Плавный пуск для однофазного двигателя

Устройство плавного пуска однофазного электродвигателя, применяемого в быту, активируется при подаче

Uк выводам L1 и L2.

Рис 5. Схема лицевой панели устройства TSG предназначенного для однофазного двигателя

Происходит увеличение значение линейного напряжения в течение определенного отрезка времени до достижения его предельного значения. Выводы Т-2 и Т-3 постоянно запитаны от питающей сети. Время процесса регулируется регулятором, в диапазоне до 20 сек. С повышением параметров напряжения происходит увеличение вращающего момента. После окончания запуска, через шунтирующий контактор (байпас) происходит подключение двигателя от сети.

Рис. 6. Схема работы устройства плавного пуска TSG при положении регулятора момента вращения Моn =0, при котором начинается цикл плавного пуска

Устройство плавного пуска электродвигателя насоса

Устройство плавного пуска для насоса с использованием преобразователя частоты осуществляет следующие операции это:

  1. Осуществление плавного пуска и торможения насосного агрегата.
  2. Производство автоматического коммутирования в зависимости от показателей уровня и параметров давления жидкости.
  3. Защиту агрегата от «сухого хода», то есть без жидкости.
  4. Защита агрегата при критическом снижении параметров напряжения.
  5. Осуществление защитных действий от перенапряжения на входе преобразователя.
  6. Сигнализирует о включении, отключении агрегата, а также при аварии.
  7. Осуществляет местный обогрев.

Рис. 7. Устройство плавного пуска схема принципиальная, для автоматизации работы погружного насоса с поддержкой давления в полном автоматическом режиме

Подключение электродвигателя осуществляется от контактов U,V,W преобразующего частотного устройства. Пусковая кнопка SB2 вызывает срабатывание реле К1 через ее контактную группу происходит соединение вводов STF и PS частотного преобразователя, который производит плавный запуск электрического насоса, который осуществляется по заложенному программному обеспечению, включенному в настройку устройства.

Датчик определяющий давление ВР1 запитан от ввода преобразователя, делает возможной наличие обратной связи в цепи стабилизирующей давление. Работа этой системы происходит при обеспечении ПИД-регулятора. Потенциометр К1 или частотный преобразователь выполняют функцию по поддержанию заданных параметров давления. Насосный агрегата, при появлении «сухого» хода, должен отключаться для зашиты, в этом случае, контакты 7-8 в цепи катушки реле К3 замыкаются, отключение происходит при срабатывании датчика «сухого» хода подключенного от реле сопротивления А2 . Реле К2 осуществляет защитную функцию по отключению электродвигателя агрегата при аварии. При аварии происходит включение лампыНL1, лампа НL2 зажигается после срабатывания датчика реагирующего на понижение водяного уровня, на недопустимое значение.

Термореле ВК1 осуществляет включение подогрева шкафа управления контактором КМ1, электронагревателей ЕК1 и ЕК2. Защита устройства от тока короткого замыкания и перегруза производится автоматом QF1.

Высоковольтное устройство плавного пуска его отличительные особенности

Рис 8. Схема высоковольтного устройства плавного пуска

К отличительным особенностям относятся:

  1. Наличие оптоволоконного управления тиристорами.
  2. Управление на микропроцессорах.
  3. Способность к работе при повышенной температуре.
  4. Возможность задания различных алгоритмов и характеристик пуска и торможения для разных видов нагрузки.
  5. Способность к интеллектуальной защите.
  6. Возможность осуществления пуска при слабых источниках питания.
  7. Осуществление степени защиты от IP 00 доIP 65

Важно: при наладке устройства плавного пуска нужно чтобы установленное время разгона было больше физического времени разгона двигателя, иначе присутствует возможность получения повреждения устройства, так внутренние байпасные контакты замыкаются по истечении времени пуска. В том случае если не произошел разгон двигателя, может выйти из строя система байпасных контактов.

Важно: автоматический повторный пуск опасен не только повреждением устройства, но и может привести к смерти людей и тяжелому травматизму.

Команда запуск, обязана сбрасываться до команды сброса, так как при наличии команды запуска после команды сброса, автоматически выполняется повторный перезапуск. Особенно это касается защиты двигателя.

Для безопасности желательно присоединить выход общей ошибки в систему управления.

Рекомендация: нежелательность автоматического пуска, диктует необходимость присоединения дополнительных компонентов, например, устройства выпадения фазы или нагрузки, с цепями управляющего и главного тока.

Как сделать плавный пуск для электроинструмента своими руками

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

  1. Плавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройства плавного пуска: правильный выбор

Ранее мы обсуждали характеристики преобразователей частоты, а сегодня настал черед устройств плавного пуска (мягких пускателей, плавных пускателей – единый термин пока не устоялся, и в этой статье мы будем использовать термин “устройство плавного пуска” – УПП).

Иногда из уст продавцов приходится слышать мнение о том, что УПП выбрать просто, это, мол, не преобразователь частоты, здесь надо только пуск организовать. Это не так. Устройство плавного пуска выбирать сложнее. Попробуем разобраться, в чем эта сложность состоит.

Назначение УПП

Читайте также:  Для чего нужен винтовой компрессор

Как следует из названия, задача прибора – организовать плавный пуск асинхронного двигателя переменного тока. Дело в том, что при прямом пуске (то есть при подключении двигателя к питающей сети при помощи обычного пускателя) двигатель потребляет пусковой ток, превышающий номинальный в 5-7 раз, и развивает пусковой момент, существенно превышающий номинальный. Все это приводит к двум группам проблем:

1) Пуск слишком быстрый, и это приводит к различным неприятностям – гидравлическим ударам, рывкам в механизме, ударному выбору люфтов, обрыву транспортерных лент и т.д.

2) Пуск тяжелый, и завершить его не удается. Здесь сначала нужно определиться с термином “тяжелый пуск” и возможностями его “облегчения” при помощи УПП. К “тяжелому пуску” обычно относят три разновидности пуска:

а) пуск, “тяжелый” для питающей сети – от сети требуется ток, который она может обеспечить с трудом или не может вообще. Характерные признаки: при пуске отключаются автоматы на входе системы, в процессе пуска гаснут лампочки и отключаются некоторые реле и контакторы, останавливается питающий генератор. Скорее всего, УПП тут действительно поправит дело. Однако следует помнить, что в лучшем случае пусковой ток удастся снизить до 250% от номинального тока двигателя, и если этого недостаточно, то решение одно – необходимо использовать преобразователь частоты.
б) Двигатель не может запустить механизм при прямом пуске – не крутится вообще или “зависает” на определенной скорости и остается на ней до срабатывания защиты. Увы, УПП ему не поможет – двигателю не хватает момента на валу. Возможно, с задачей справится преобразователь частоты, но этот случай требует исследования.
в) Двигатель уверенно разгоняет механизм, но не успевает дойти до номинальной частоты – срабатывает автомат на входе. Такое часто бывает на тяжелых вентиляторах с достаточно высокой частотой вращения. Устройство плавного пуска здесь, скорее всего, поможет, но риск неудачи сохраняется. Чем ближе механизм к номинальной скорости в момент срабатывания защиты, тем больше вероятность успеха.

Организация пуска при помощи УПП

Принцип работы устройства плавного пуска заключается в том, что напряжение, подаваемое от сети через УПП на нагрузку, ограничивается при помощи специальных силовых ключей – симисторов (или встречно – параллельно включенных тиристоров) – см. рис. 1. В результате напряжение на нагрузке можно регулировать.

Немного теории: процесс пуска – это процесс преобразования электрической энергии источника питания в кинетическую энергию работающего на номинальной скорости механизма. Очень упрощенно этот процесс можно описать так: сопротивление двигателя R в процессе разгона увеличивается от очень маленького при остановленном двигателе до достаточно большого на номинальной скорости, поэтому ток, который по закону Ома равен:

I = U / R (1)

оказывается очень большим, а передача энергии

Е = P х t = I х U х t (2)

очень быстрой. Если между сетью и двигателем установить УПП, то формула (1) действует на его выходе, а формула (2) – на входе. Понятно, что ток в обеих формулах одинаковый. УПП ограничивает напряжение на двигателе, плавно повышая его по мере разгона вслед за ростом сопротивления, ограничивая, таким образом, потребляемый ток. Поэтому по формуле (2) при постоянстве необходимой энергии Е и напряжении сети U чем меньше ток I, тем больше время пуска t. Отсюда видно, что при снижении напряжения будут решаться как проблемы, связанные со слишком быстрым пуском, так и проблемы, связанные со слишком большим током, потребляемым от сети.

Однако в наших выкладках не учитывалась нагрузка, для разгона которой нужен дополнительный момент, и соответственно дополнительный ток, поэтому уменьшать ток слишком сильно нельзя. Если нагрузка велика, то момента на валу двигателя может не хватить даже при прямом пуске, не говоря уже о пуске при пониженном напряжении – это вариант тяжелого пуска “б”, описанный выше. Если же при снижении тока момент оказывается достаточным для разгона, но время в формуле (2) растет, то может сработать автомат – с его точки зрения время протекания тока, существенно превышающего номинальный, недопустимо велико (вариант тяжелого пуска “в”).

Основные характеристики УПП. Возможность контроля тока. По существу это способность УПП регулировать напряжение так, чтобы ток изменялся по заданной характеристике. Эта функция обычно называется пуском в функции тока. Простейшие УПП, не имеющие такой возможности, просто регулируют напряжение в функции времени – т.е. напряжение на двигателе плавно возрастает от начального до номинального за заданное время. Во многих случаях этого достаточно, особенно при решении проблем группы 1. Но если основная причина установки УПП – ограничение тока, то без его точного регулирования не обойтись. Эта функция особенно важна тогда, когда из-за ограниченной мощности сети (маленький трансформатор, слабый генератор, тонкий кабель и т.п.) превышение предельно допустимого тока чревато аварией. Кроме того, УПП с контролем тока способны реализовать его плавное нарастание в начале процесса пуска, что особенно важно при работе от генераторов, которые очень чувствительны к резким броскам нагрузки.

Необходимость шунтирования.

По окончании процесса пуска и достижении номинального напряжения на двигателе УПП желательно вывести из силовой цепи. Для этого применяется шунтирующий контактор, соединяющий вход и выход УПП пофазно (см. рис. 2).

По команде от УПП этот контактор замыкается, и ток течет в обход прибора, что позволяет его силовым элементам полностью остыть. Однако, даже при отсутствии шунтирующей цепи, когда во все время работы двигателя через симисторы течет номинальный силовой ток, их нагрев по сравнению с режимом пуска оказывается небольшим, поэтому многие УПП допускают работу без шунтирования. Платой за такую возможность оказывается немного меньший номинальный ток и существенное увеличение веса и габаритов за счет радиатора, необходимого для отвода тепла от силовых ключей. Некоторые УПП строятся по обратному принципу – в них шунтирующий контактор уже встроен, и на работу без шунтирования они не рассчитаны, поэтому из-за уменьшения охлаждающих радиаторов их размеры оказываются минимальными. Это положительно сказывается и на цене, и на получающейся схеме подключения, но их время работы в пусковом режиме оказывается меньше по сравнению с другими приборами.

Количество регулируемых фаз.

По этому параметру УПП делятся на двухфазные и трехфазные. В двухфазных, как это следует из названия, ключи установлены только в двух фазах, третья же подключается к двигателю напрямую. Плюсы – снижение нагрева, уменьшение габаритов и цены.

Минусы – нелинейное и несимметричное по фазам потребление тока, которое хотя и частично компенсируется специальными алгоритмами управления, все же отрицательно влияет на сеть и двигатель. Впрочем, при нечастых пусках этими недостатками можно пренебречь.

Цифровое управление. Система управления УПП может быть цифровой и аналоговой. Цифровые УПП обычно реализуются на микропроцессоре и позволяют очень гибко управлять процессом работы прибора и реализовывать множество дополнительных функций и защит, а также обеспечивать удобную индикацию и связь с управляющими системами верхнего уровня. В управлении аналоговых УПП используются операционные элементы, поэтому их функциональная насыщенность ограничена, настройка выполняется потенциометрами и переключателями, а связь с внешними системами управления обычно осуществляется при помощи дополнительных устройств.

Дополнительные функции

Защита. Кроме своей основной функции – организации плавного пуска – УПП содержат в себе комплекс защит механизма и двигателя. Как правило, в этот комплекс входит электронная защита от перегрузки и неисправностей силовой цепи. В дополнительный набор могут входить защиты от превышения времени пуска, от перекоса фаз, изменения чередования фаз, слишком маленького тока (защита от кавитации в насосах), от перегрева радиаторов УПП, от снижения частоты сети и т.д. Ко многим моделям возможно подключение термистора или термореле, встроенного в двигатель. Однако следует помнить, что УПП не может защитить ни себя, ни сеть от короткого замыкания в цепи нагрузки. Конечно, сеть будет защищена вводным автоматом, но УПП при коротком замыкании неизбежно выйдет из строя. Некоторым утешением может служить только то, что короткое замыкание при правильном монтаже не возникает мгновенно, и в процессе снижения сопротивления нагрузки УПП обязательно отключится, только не стоит вновь включать его, не установив причину отключения.

Пониженная скорость. Некоторые устройства плавного пуска способны реализовать так называемое псевдочастотное регулирование –перевод двигателя на пониженную скорость. Этих пониженных скоростей может быть несколько, но они всегда строго определены и не поддаются коррекции пользователем.

Кроме того, работа на этих скоростях сильно ограничена по времени. Как правило, эти режимы используются в процессе отладки или при необходимости точной установки механизма в нужное положение перед началом работы или по ее окончании.

Торможение. Довольно много моделей способны подать на обмотку двигателя постоянный ток, что приводит к интенсивному торможению привода. Эта функция обычно нужна в системах с активной нагрузкой – подъемники, наклонные транспортеры, т.е. системы, которые могуг двигаться сами собой при отсутствии тормоза. Иногда эта функция нужна для предпусковой остановки вентилятора, вращающегося в обратную сторону из-за тяги или действия другого вентилятора.

Толчковый пуск. Используется в механизмах, имеющих высокий момент трогания. Заключается функция в том, что в самом начале пуска на двигатель кратковременно (доли секунды) подается полное напряжение сети, и происходит срыв механизма с места, после чего дальнейший разгон происходит в обычном режиме.

Экономия энергии в насосно-вентиляторной нагрузке. Поскольку УПП представляет собой регулятор напряжения, то при малой нагрузке можно снизить напряжение питания без ущерба для работы механизма.

Экономию энергии это дает, но не следует забывать, что тиристоры в режиме ограничения напряжения являются нелинейной нагрузкой для сети со всеми вытекающими отсюда последствиями.

Есть и другие возможности, которые производители закладывают в свои изделия, но для их перечисления объема одной статьи недостаточно.

Методика выбора

Теперь вернемся к тому, с чего мы начинали – к выбору конкретного прибора.

Многие советы, данные для выбора преобразователя частоты, действуют и здесь: сначала следует отобрать серии, отвечающие техническим требованиям по функциональности, затем выбрать из них те, которые охватывают диапазон мощностей для конкретного проекта, и из оставшихся выбрать нужную серию в соответствии с другими критериями – производитель, поставщик, сервис, цена, габариты, и т.д.

Если нужно выбрать УПП для насоса или вентилятора, запуск которых происходит не чаще двух-трех раз в час, то можно просто выбрать модель, номинальный ток которой равен или больше номинального тока запускаемого двигателя. Этот случай охватывает около 80% применений, и не требует консультаций со специалистом. Если же частота пусков в час превышает 10, то нужно учесть и необходимое ограничение тока, и требуемое затягивание пуска по времени. В этом случае очень желательна помощь поставщика, у которого, как правило, имеется программа выбора нужной модели или хотя бы расчетный алгоритм. Данные, которые понадобятся для расчета: номинальный ток двигателя, количество пусков в час, необходимая длительность пуска, необходимое ограничение тока, необходимая длительность останова, окружающая температура, предполагаемое шунтирование.

Если же двигатель запускается свыше 30 раз в час, то стоит рассмотреть в качестве альтернативы вариант использования преобразователя частоты, поскольку даже выбор более мощной модели УПП может не решить проблему. А цена его уже будет сравнима с ценой преобразователя при существенно меньшей функциональности и серьезному влиянию на качество сети.

Подключение

Кроме очевидного подключения прибора к сети и двигателю, необходимо определиться с шунтированием.

Несмотря на то, что шунтирующий контактор будет коммутировать номинальный, а не пусковой ток двигателя, желательно все-таки использовать модель, рассчитанную на прямой пуск – хотя бы для реализации аварийных режимов работы. При подключении следует обратить особое внимание на фазировку – если ошибочно соединить, например, фазу А на входе УПП с другой фазой на выходе, то при первом же включении шунтирующего контактора произойдет короткое замыкание, и прибор будет выведен из строя.

Некоторые УПП допускают так называемое шестипроводное подключение, схема которого показана на рис. 3. Такое подключение требует большего количества кабелей, но позволяет использовать устройство плавного пуска с двигателем, мощность которого намного превышает мощность самого УПП.

При установке УПП следует иметь в виду еще одно его свойство, часто приводящее к недоразумениям (см. тяжелый пуск “в”). При расчете вводного автомата для двигателя, подключающегося к сети напрямую, учитывается номинальный ток двигателя, протекающи й длительное время, и пусковой, протекающий лишь несколько секунд. При использовании же УПП пусковой ток существенно меньше, но протекает он намного дольше – до минуты и более. Автомат не может этого “понять” и считает, что запуск давно завершен, а протекающий ток, превышающий номинальный в разы, является следствием аварийной ситуации, и отключает систему. Во избежание этого следует либо установить специальный автомат с возможностью установки дополнительного режима для процесса плавного пуска, либо выбрать автомат с номинальным током, соответствующим пусковому току при использовании УПП. Во втором случае этот автомат не сможет защитить двигатель от перегрузок, но эту функцию выполняет сам УПП, так что защита двигателя не пострадает.

Подведем итоги. Если механизм, пуск которого нужно сделать более плавным, вписывается во все перечисленные в этой статье ограничения, а возможности, обеспечиваемые доступными моделями УПП, вас устраивают, то ваш выбор – устройство плавного пуска. Экономия средств по сравнению с применением преобразователя частоты (заменой питающего трансформатора, увеличением мощности генератора, заменой кабеля на более толстый – выберите ваш случай) будет ощутимой. Если же УПП по каким-то причинам не подходит – еще раз обратите внимание на преобразователи частоты, которые хотя и дороже, но намного функциональнее.

Руслан Хусаинов, к.т.н., технический директор ЗАО “Сантерно” (Москва)

Ссылка на основную публикацию