Как подобрать пластинчатый теплообменник?

Как подобрать пластинчатый теплообменник?

Расчет пластинчатого теплообменника

Сначала мы рассмотрим, какие бывают теплообменники, а потом рассмотрим формулы расчета теплообменников. И Таблицы различных теплообменников по мощностям.

Паяный теплообменник AlfaLaval – неразборный!

AlfaLaval – Разборный с резиновыми прокладками

Основное предназначение теплообменников такого типа – это мгновенная передача температуры от одного независимого контура – другому. Это дает возможность получить тепло от центрального отопления к своей независимой системе отопления. Также дает возможность получать горячее водоснабжение.

Существуют разборные и неразборные теплообменники! AlfaLaval – Российского производства!

Паяный теплообменник AlfaLaval – неразборный!

В паяных теплообменниках из нержавеющей стали не нужны прокладки и прижимные плиты. Припой надежно соединяет пластины во всех точках контакта, что обеспечивает оптимальный КПД теплопередачи и высокое сопротивление давлению. Конструкция пластин рассчитана на длительный срок эксплуатации ППТ очень компактны, так как теплопередача происходит практически через весь материал, из которого они изготовлены. Они имеют небольшую массу и малый внутренний объем. Компания Альфа Лаваль предлагает широкий спектр аппаратов, которые всегда можно приспособить к конкретным требованиям заказчиков. Любые задачи, связанные с теплообменом, ППТ решают наиболее эффективным с экономической точки зрения способом.

Паяный пластинчатый теплообменник состоит из тонких гофрированных пластин из нержавеющей стали, соединенных между собой вакуумной пайкой с использованием меди или никеля в качестве припоя. Теплообменники, паянные медью, чаще всего применяются в системах теплоснабжения или кондиционирования воздуха, в то время как никельпаяные в основном предназначены для пищевой промышленности и для работы с агрессивными жидкостями.

Защита от смешения сред

В тех случаях, когда по правилам эксплуатации или по иным причинам требуется обеспечить повышенную безопасность, можно воспользоваться патентованными конструкциями паяных теплообменников с двойными стенками. В этих теплообменниках две среды отделены друг от друга двойной пластиной из нержавеющей стали. В случае внутренней протечки ее можно будет заметить на внешней стороне теплообменника, но смешения сред в любом случае не произойдет.

AlfaLaval – Разборный с резиновыми прокладками

Теплообменник: Жидкость – жидкость

1-пластины; 2-стяжные болты; 3,4-передняя и задняя массивная плита; 5-патрубки для присоединения контура теплоснабжения; 6-патрубки для присоединения трубопроводов системы отопления.

Получить отдельный замкнутый (независимый) отопительный контур системы отопления, при этом получая только тепловую энергию. Расход и давление не передаются. Тепловая энергия передается за счет передачи температуры теплопередающими пластинами по разные стороны которого протекает теплоноситель (отдающий тепло и принимающий тепло). Это дает возможность изолировать свою систему отопления от центральной сети отопления. Могут быть и другие задачи.

1-подающий патрубок для отпуска тепла; 2-обратный патрубок для отпуска тепла; 3-обратный патрубок для приема тепла; 4-подающий патрубок для приема тепла; 5-канал для приема тепла; 6-канал для отпуска тепла. Стрелками указано направление движения теплоносителя.

Схема системы отопления

Каждый пластинчатый теплообменник обладает значениями, которые необходимы для расчета.

Эффективность (КПД) теплообменника находиться по формуле

На практике эти значения равны 80-85%

Какие должны быть расходы через теплообменник?

По разные стороны теплообменника имеются два независимых контура, это означает, что расходы этих контуров могут быть разными.

Чтобы найти расходы нужно знать, сколько тепловой энергии потребуется для отопления второго контура.

Например, это будет 10 кВт.

Теперь нужно посчитать необходимую площадь пластин для передачи тепловой энергии по этой формуле

Полный коэффициент теплопередачи

Чтобы решить задачу нужно познакомиться с некоторыми типами теплообменников, и на их основе производить анализ расчетов подобных тепловых обменников.

Самостоятельно сделать расчет теплообменника у Вас не получиться по одной простой причине. Все данные, которые характеризуют теплообменник скрыты от посторонних лиц. Возникает трудность найти коэффициент теплопередачи от реального расхода! И если расход будет заведомо маленьким, то и КПД теплообменника будет не достаточным!

Увеличение мощности с уменьшением расхода приводит к увеличению самого теплообменника в 3-4 раза по количеству пластин.

У каждого производителя теплообменников есть специальная программа, которая подбирает теплообменник.

Чем выше коэффициент теплопередачи, тем быстрее этот коэффициент становиться меньше из-за отложение от накипи!

Графа “Теплоноситель” – контур 1 источника тепла.

Расчет теплообменника пластинчатого

Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.

Данные теплообменника, которые нужны для технического расчета:

  • тип среды (пример вода-вода, пар-вода, масло-вода и др.)
  • тепловая нагрузка (Гкал/ч) или мощность (кВт)
  • массовый расход среды (т / ч) – если не известна тепловая нагрузка
  • температура среды на входе в теплообменник °С (по горячей и холодной стороне)
  • температура среды на выходе из теплообменника °С (по горячей и холодной стороне)

Для расчета данных также понадобятся:

    • из технических условий (ТУ), которые выдает теплоснабжающая организация
    • из договора с теплоснабжающей организацией
    • из технического задания (ТЗ) от гл. инженера, технолога

Подробнее об исходных данных для расчета

  1. Температура на входе и выходе обоих контуров.
    Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник.
  2. Максимально допустимая рабочая температура, давление среды.
    Чем хуже параметры, тем ниже цена. Параметры и стоимость оборудования определяют данные проекта.
  3. Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
    Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту.
    Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913.
  4. Тепловая мощность (Р, кВт).
    Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше):
    P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 – t2).
  5. Дополнительные характеристики.
    • для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
    • средний температурный напор LMTD (рассчитывается по формуле ΔT1 – ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) – T4(выход горячего контура)
      и ΔT2 = T2 (вход холодного контура) – T3 (выход холодного контура);
    • уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.

Виды технического расчета теплообменного оборудования

Тепловой расчет

Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.

Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.

Давайте рассмотрим пример общего расчета.

В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.

Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],

Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];

При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:

r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк – температура конденсата на выходе из аппарата [°C].

Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:

Благодаря данной формуле определяем расход теплоносителя:

Формула для расхода, если нагрев идет паром:

G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].

Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:

Читайте также:  Виды и характеристики стабилизаторов напряжения Штиль

∆tср = (∆tб – ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм – большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:

δст – толщина стенки [мм];
λст – коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
Rзаг – коэффициент загрязнения стенки.

Конструктивный расчет

В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.

Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.

Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:

F = Q/ k·∆tср [м 2 ]

Размер проходного сечения теплоносителей определяют из формулы:

S = G/(w·ρ) [м 2 ]

G – расход теплоносителя [кг/ч];
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:

Вид теплоносителяСкорость потока, м/с
Вязкие жидкости0,636 · (∆Pгр/∆Pнагр) 0,364 · (1000 – t нагр ср/ 1000 – tгр ср)

Gгр, нагр – расход теплоносителей [кг/ч];
∆Pгр, нагр – перепад давления теплоносителей [кПа];
tгр, нагр ср – средняя температура теплоносителей [°C];

Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную.

Ниже представлена формула, по которой высчитываем количество каналов среды:

Gнагр – расход теплоносителя [кг/ч];
wопт – оптимальная скорость потока теплоносителя [м/с];
fк – живое сечение одного межпластинчатого канала (известно из характеристик выбранных пластин);

Гидравлический расчет

Технологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление.

Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена:

∆pп – потери давления [Па];
λ – коэффициент трения;
l – длина трубы [м];
d – диаметр трубы [м];
∑ζ – сумма коэффициентов местных сопротивлений;
ρ – плотность [кг/м 3 ];
w – скорость потока [м/с].

Как проверить правильность расчета пластинчатого теплообменника?

При расчете данного теплообменника обязательно нужно указать следующие параметры:

  • для каких условий предназначен теплообменник, и какие показатели он будет выдавать.
  • все конструктивные особенности: количество и компоновка пластин, используемые материалы, типоразмер рамы, тип присоединений, расчетное давление и т.д.
  • габариты, вес, внутренний объем.

– Габариты и типы присоединений

– Расчетные данные

Они должны подходить под все условия, в которых будет подключаться, и работать наш теплообменник.

– Материалы пластин и уплотнений

в первую очередь должны соответствовать всем условия эксплуатации. Для примера: к агрессивной среде не допускаются пластины из простой нержавеющей стали, или, если разбирать совсем противоположную среду, то ставить пластины из титана, для простой системы отопления не нужно, это не будет иметь никакого смысла. Более подробное описание материалов и их соответствия определенной среде, вы можете посмотреть здесь.

– Запас площади на загрязнение

Не допускаются слишком большие размеры (не выше 50%). Если параметр больше – теплообменник выбран некорректно.

Пример расчета пластинчатого теплообменника

Исходные данные:

  • Нагрузка (кол-во тепла) 2,5 Гкал/час
  • Массовый расход 65 т/час
  • Среда: вода
  • Температуры: 95/70 град С

Переведем данные в привычные величины:

Q = 2,5 Гкал/час = 2 500 000 ккал/час

G = 65 000 кг/час

Давайте проведем расчет по нагрузке, чтобы узнать массовый расход, так как данные тепловой нагрузки являются самыми точными, ведь покупатель или клиент не способен точно подсчитать массовый расход.

Выходит, что представленные данные являются неверными.

Данную форму также можно использовать, когда мы не знаем каких-либо данных. Она подойдет если:

  • отсутствует массовый расход;
  • отсутствуют данные тепловой нагрузки;
  • неизвестна температура внешнего контура.
Горячая сторонаХолодная сторона
Т1/Т2135/9 ℃40/70 ℃
Расход100т/ч

Вот так мы с вами нашли неизвестный нам ранее массовый расход среды холодного контура, имея лишь параметры горячего.

Как рассчитать пластинчатый теплообменник (видео)


Как подобрать теплообменник правильно?

Введение

Правильный подбор модели теплообменного аппарата состоит из четырех пунктов:

  1. Определение задачи, которую будет решать теплообменник
  2. Определение технических условий эксплуатации
  3. Расчет теплообменного аппарата
  4. Подбор конкретной модели, подходящей под расчетные параметры

Определение задачи

Основное назначение теплообменного аппарата – это передача энергии (тепла) одной среды другой без смешивания. Поэтому, в-первую очередь, определите, что вы хотите сделать с целевой средой – охладить или нагреть. Кроме того, необходимо учесть где будет использоваться агрегат, например, вам нужен теплообменник для бассейна. После этого переходят к определению технических условий использования оборудования.

Технические условия эксплуатации

Тип среды

Обратите внимание на типы, используемых сред. Что это: пар, вода, нефть, газ, этиленгликоль или что-то еще? Структура теплоносителя будет влиять на расчеты и дальнейший подбор устройства, так как агрессивные вещества требуют более высоких прочностных характеристик теплообменника.

Температуры сред на выходах и входах теплообменника

На схеме видно, как теплоноситель поступает в теплообменный аппарат (t1) и, отдав часть тепла теплопотребителю, который также заходит в теплообменник (t3), на выходе имеет изменившуюся температуру (t2).

Допустимые потери по напору нагреваемой и охлаждаемой стороны

Из-за конструкционных особенностей теплообменника, при прохождении через него рабочей среды происходит падение ее давления. Технологические процессы, в которых используются теплообменные аппараты, крайне требовательны к данной характеристике. Например, слишком большое падение давления жидкости не позволит поднимать ее на верхние этажи жилового здания.

Максимальная рабочая температура

Логично, что чем выше температура внутри устройства, тем более жесткие требования предъявляются к конструкционным особенностям теплообменного аппарата и материалам, которые используются в нем.

Максимальное рабочее давление

Аналогично предыдущему пункту, поскольку высокие температуры и давление внутри теплообменника требуют использование более прочных материалов.

Тепловая нагрузка

Способность теплообменного аппарата передать количество энергии (тепла) от одной среды другой. В конечном итоге влияет на габариты теплообменника, а значит ограничивает выбор конкретных моделей.

Расчет

Опираясь на данные, полученные при определении технических условий эксплуатации, производится расчет теплообменника.

  • Тепловой
  • Механический
  • Расчет температурных напряжений
  • Компоновочный
  • Гидравлический
  • Конструктивный расчет
  • Прочностной
  • Поверочный

Подробно о каждом виде расчета мы расскажем в следующих статьях. Поэтому подписывайтесь на нашу e-mail рассылку и новости в социальных сетях, чтобы не пропустить их.

Подбор теплообменника

На основании произведенных расчетов, которые мы указали выше – на выходе получаем набор параметров и их значений, например, скорость течения воды в трубах, их диаметр, площадь теплообмена и т.д.

Далее переходим к подбору аппарата, который подходит под расчет. Произвести подбор модели теплообменника точно и быстро позволяет специальное программное обеспечение от ведущих производителей теплообменных аппаратов: Ридан, Alfa Laval, GEA и т.д. Инженеры компании «ПроТепло» используют самые современные версии такого ПО.

Если вы хотите углубиться в специфику подбора и расчета теплообменных аппаратов, то рекомендуем подписаться на наши новости и e-mail рассылку.

Если же вам необходимо подобрать теплообменный аппарат «здесь и сейчас», то заполните форму подбора ниже.

Как подобрать теплообменник

На правах рекламы

И если профессиональные монтажники представляют себе подобные устройства и возможности их использования в достаточной мере, то для большинства обывателей теплообменник – это что-то металлическое, расположенное внутри котла, что греет воду. Вместе с тем сфера применения данных устройств очень обширна.

Прежде всего, теплообменник представляет собой оборудование, в рабочем блоке которого налажен теплообмен между элементами, обычно это жидкости с различными температурами. В теплообменнике две среды разделяют только тонкие стенки труб или пластин с высокой теплопроводностью. Чем выше площадь такого контакта, тем больше тепла успеет перейти от более нагретой жидкости к холодной. По смыслу теплообменник всегда поточный, хоть сами устройства между собой могут существенно отличаться объемом камер и секций для перекачки двух сред.

Теплообменники применяют в системах отопления, системах охлаждения, для обогрева бассейнов, в различных отраслях: машиностроении, химической промышленности, фармацевтике и пищевом производстве и т.д.

Вместе с тем при помощи данных устройств можно реализовать весьма эффективные инженерные решения в части отопления и горячего водоснабжения не только на крупных промышленных объектах, но и в частных домах, и даже в квартирах. И для этого нет необходимости самостоятельно изобретать велосипед из подручных средств – выпускаемый сегодня производителями ассортимент теплообменников в состоянии обеспечить решение любой бытовой задачи.

Возникает лишь один вопрос: как правильно подобрать необходимое и отвечающее именно вашим задачам оборудование и при этом не переплатить.

При выборе теплообменника нужно учитывать массу параметров, разобраться в значении которых обывателю порой просто не под силу. Поэтому выбор лучше доверить профессионалам, которые выполнят расчет, подберут необходимое оборудование и предоставят комплексную информационную поддержку.

Одним из крупнейших игроков на рынке теплообменников является компания «Комплексное снабжение», которая не только объединяет несколько десятков мировых брендов, но и имеет собственное производство подобного оборудования под торговой маркой «КС», для максимального удовлетворения запросов покупателей.

Инженеры компании по вашему запросу осуществят качественный расчет именно для вашего объекта и предложат оптимальный вариант по соотношению «цена-качество». При этом покупателю, оформляя заказ, не придется тратить много времени на заполнение непонятных опросных листов еще более непонятными показателями, как это зачастую бывает в других компаниях.

Под конкретный технологический процесс специалисты подберут определенный тип теплообменника с учетом технических характеристик и рабочих параметров. Не менее важен и материал, из которого изготавливают теплопередающие поверхности между теплоносителями, чтобы обеспечить надежную и долговечную работу.

На сегодняшний день наиболее совершенными устройствами являются пластинчатые теплообменники в разборном и паяном исполнении. Данные приборы являются универсальными, весьма компактными и отвечают высоким показателям энергоэффективности.

Каждый из названных типов применяется в зависимости от конкретной задачи.

Например, для частных домов и коттеджей чаще применяются паяные теплообменники. Их используют в системах теплого пола, для организации горячего водоснабжения, отопления теплиц, веранд и пешеходных дорожек. В многоквартирных жилых домах, в основном, используются пластинчатые разборные теплообменники (как в тепловых пунктах, так и по отдельности), что позволяет сократить издержки на потребление тепловой энергии.

Паяные теплообменники очень эффективны в технологических процессах, использующих неагрессивные жидкости без механических примесей. Они отличаются компактностью, отсутствием протечек и устойчивостью к нагрузкам. К большим преимуществам можно отнести их невысокую стоимость и отсутствие необходимости обслуживания. Рабочая температура паяных теплообменников варьируется от –180 до +200 °C, максимальное же давление – до 45 бар.

Клиент обратился с просьбой подобрать теплообменник для непостоянного отопления веранды площадью 100 метров квадратных и высотой потолка 3 метра. Установленный в доме газовый котел мощностью 35 кВт работает по температурному графику 95/70. Согласно расчету специалистов «Комплексного снабжения» в качестве оптимального варианта был выбран паяный теплообменник KAORI Е40-26, с залитой в отопительный контур незамерзающей жидкостью на основе пропилен-гликоля. Система обеспечивает температуру теплоносителя на выходе 80 градусов, на входе – 60. Когда нет необходимости отапливать веранду, клиенту достаточно просто выключить насос контура.

Пластинчатые теплообменники за счет своей конструктивной особенности имеют ряд превосходных потребительских характеристик:

  • универсальность (может применяться на различных объектах и использоваться в зависимости от требуемой мощности);
  • экономичность (стоимость теплообменника зависит от количества пластин, количество же пластин подбирается, исходя из требований конкретного объекта);
  • как следствие – компактность (теплообменник подбирается согласно требуемым показателям теплоотдачи, чем меньше перепады – тем меньше пластин используется);
  • ремонтопригодность (в случае повреждения можно обойтись заменой изношенной пластины, а не всего устройства).

Температурный диапазон пластинчатых теплообменников – от -50 до +200 градусов, а рабочее давление – от 10 до 30 бар, в зависимости от материала рамы.

Заказчик поставил задачу подобрать теплообменник для организации отопления коттеджа площадью 152 квадратных метра со стандартной высотой потолков. Температура теплоносителя (греющего контура) от ТЭЦ – 120 градусов на входе в теплообменник, 70 – на выходе. Требовалось рассчитать теплообменник так, чтобы на выходе из теплообменника (нагреваемый контур) получить 90 градусов. Для данного проекта специалисты «Комплексного снабжения» предложили пластинчатый разборный теплообменник КС03.

По каким параметрам осуществляется подбор теплообменника?

  1. Технические характеристики: тепловая нагрузка, расходы рабочих сред, температурный график, допустимые потери давления, максимальные и минимальные рабочие температура и давление, коррозионная агрессивность рабочих сред. Например, чем выше требуемая мощность, тем большими габаритами, количеством пластин и уплотнений будет обладать теплообменник.
  2. Компания-производитель. Зарубежные бренды, такие как Sondex, APV, Swep, Danfoss, Tranter, Funke, Alfa Laval и др. имеют более высокую цену, по сравнению с отечественными аналогами. Исходя из этого, стоимость теплообменника может варьироваться, хотя исходные характеристики будут совпадать. Теплообменники российского производства представлены марками КС, Ридан, ТИ и ТИЖ. Компания-производитель «Комплексное снабжение» использует современные импортные материалы, которые обеспечивают надежность и долговечность теплообменных аппаратов. Производственное оборудование соответствует международным и российским стандартам, а перед сдачей проводятся обязательные гидравлические испытания.
  3. Типы и материалы рам. Рамы теплообменника определяют максимально возможное давление. Изготавливают как «облегченный» тип рам (до 10 бар), так и «усиленный» (до 25-30 бар).
  4. Типы и материалы уплотнений и пластин для теплообменников. Основами пластин выступают титан, нержавеющая сталь (AISI 304, AISI 316), легированная сталь, латунь (специфические среды), медь, сплавы на основе никеля и другие материалы для специфических теплоносителей. Уплотнения в теплообменниках не допускают смешения теплоносителей в контурах теплообмена. По способу исполнения бывают клеевые (с использованием специального клея) или клипсовые (зажимается и фиксируется). Преимуществами клипсового соединения является то, что значительно легче осуществлять замену вышедших из строя уплотнений. На стоимость уплотнений также оказывают влияние многие показатели: сопротивление агрессивным средам, износостойкость, теплостойкость.

И это далеко не полный перечень нюансов, учитываемых при выборе теплообменников. Очевидно, что человеку, не являющемуся профессионалом в данном вопросе, купить теплообменник самостоятельно и сделать корректный выбор будет крайне сложно. В таких ситуациях на помощь придут специалисты компании «Комплексное снабжение». Достаточно отправить заявку на fhouse@sn22.ru, и вы получите качественный расчет именно для вашего объекта с предложением оптимального варианта по соотношению «цена-качество».

Расчет пластинчатого теплообменника – как правильно определить параметры?

Общие принципы устройства схем теплоснабжения

Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.

Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть — служащая для транспортировки тепла от источника к потребителю.

  1. Паровой котел на ТЭЦ или котельной.
  2. Сетевой теплообменник.
  3. Циркуляционный насос.
  4. Теплообменник системы горячего водоснабжения.
  5. Теплообменник системы отопления.

Роль элементов схемы:

  • котельный агрегат — источник тепла, передача теплоты сгорания топлива к теплоносителю;
  • насосное оборудование — создание циркуляции теплоносителя;
  • подающий трубопровод — подача нагретого теплоносителя от источника к потребителю;
  • обратный трубопровод — возврат охлажденного теплоносителя на источник от потребителя;
  • теплообменное оборудование — преобразование тепловой энергии.

Температурные графики

В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.

Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.

Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.

Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …

Срезка графика в верхней части — когда у котельной не хватает мощности.

Срезка графика в нижней части — для обеспечения работоспособности систем ГВС.

Работа систем отопления идет в основном по графику 95/70 для обеспечения средней температуры в отопительном приборе 82,5°С при -30° С.

Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.

График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.

Гидравлика тепловых сетей

Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.

Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.

Расчет пластинчатых теплообменников для систем отопления

Приготовление отопительной воды может происходить путем нагрева в теплообменнике.

При расчете пластинчатого теплообменника для получения отопительной воды, исходные данные берутся для самого холодного периода , т. е. когда необходимы самые высокие температуры и соответственно самое большое теплопотребление. Это наихудший режим для теплообменника, рассчитанного на отопление.

Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5—15°С.

Расчет пластинчатых теплообменников для систем ГВС

При расчете пластинчатых теплообменников для систем горячего водоснабжения исходные данные берутся для переходного периода , т. е. когда температура подающего теплоносителя низка (обычно 70°С), холодная вода имеет самую низкую температуру (2—5°С) и при этом еще работает система отопления — это май-сентябрь месяцы. Это наихудший режим для теплообменника ГВС.

Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.

При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.

При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.

Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4—5 раз.

Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной расчетной программе «Ридан».

Как подобрать теплообменник

На правах рекламы

И если профессиональные монтажники представляют себе подобные устройства и возможности их использования в достаточной мере, то для большинства обывателей теплообменник – это что-то металлическое, расположенное внутри котла, что греет воду. Вместе с тем сфера применения данных устройств очень обширна.

Прежде всего, теплообменник представляет собой оборудование, в рабочем блоке которого налажен теплообмен между элементами, обычно это жидкости с различными температурами. В теплообменнике две среды разделяют только тонкие стенки труб или пластин с высокой теплопроводностью. Чем выше площадь такого контакта, тем больше тепла успеет перейти от более нагретой жидкости к холодной. По смыслу теплообменник всегда поточный, хоть сами устройства между собой могут существенно отличаться объемом камер и секций для перекачки двух сред.

Теплообменники применяют в системах отопления, системах охлаждения, для обогрева бассейнов, в различных отраслях: машиностроении, химической промышленности, фармацевтике и пищевом производстве и т.д.

Вместе с тем при помощи данных устройств можно реализовать весьма эффективные инженерные решения в части отопления и горячего водоснабжения не только на крупных промышленных объектах, но и в частных домах, и даже в квартирах. И для этого нет необходимости самостоятельно изобретать велосипед из подручных средств – выпускаемый сегодня производителями ассортимент теплообменников в состоянии обеспечить решение любой бытовой задачи.

Возникает лишь один вопрос: как правильно подобрать необходимое и отвечающее именно вашим задачам оборудование и при этом не переплатить.

При выборе теплообменника нужно учитывать массу параметров, разобраться в значении которых обывателю порой просто не под силу. Поэтому выбор лучше доверить профессионалам, которые выполнят расчет, подберут необходимое оборудование и предоставят комплексную информационную поддержку.

Одним из крупнейших игроков на рынке теплообменников является компания «Комплексное снабжение», которая не только объединяет несколько десятков мировых брендов, но и имеет собственное производство подобного оборудования под торговой маркой «КС», для максимального удовлетворения запросов покупателей.

Инженеры компании по вашему запросу осуществят качественный расчет именно для вашего объекта и предложат оптимальный вариант по соотношению «цена-качество». При этом покупателю, оформляя заказ, не придется тратить много времени на заполнение непонятных опросных листов еще более непонятными показателями, как это зачастую бывает в других компаниях.

Под конкретный технологический процесс специалисты подберут определенный тип теплообменника с учетом технических характеристик и рабочих параметров. Не менее важен и материал, из которого изготавливают теплопередающие поверхности между теплоносителями, чтобы обеспечить надежную и долговечную работу.

На сегодняшний день наиболее совершенными устройствами являются пластинчатые теплообменники в разборном и паяном исполнении. Данные приборы являются универсальными, весьма компактными и отвечают высоким показателям энергоэффективности.

Каждый из названных типов применяется в зависимости от конкретной задачи.

Например, для частных домов и коттеджей чаще применяются паяные теплообменники. Их используют в системах теплого пола, для организации горячего водоснабжения, отопления теплиц, веранд и пешеходных дорожек. В многоквартирных жилых домах, в основном, используются пластинчатые разборные теплообменники (как в тепловых пунктах, так и по отдельности), что позволяет сократить издержки на потребление тепловой энергии.

Паяные теплообменники очень эффективны в технологических процессах, использующих неагрессивные жидкости без механических примесей. Они отличаются компактностью, отсутствием протечек и устойчивостью к нагрузкам. К большим преимуществам можно отнести их невысокую стоимость и отсутствие необходимости обслуживания. Рабочая температура паяных теплообменников варьируется от –180 до +200 °C, максимальное же давление – до 45 бар.

Клиент обратился с просьбой подобрать теплообменник для непостоянного отопления веранды площадью 100 метров квадратных и высотой потолка 3 метра. Установленный в доме газовый котел мощностью 35 кВт работает по температурному графику 95/70. Согласно расчету специалистов «Комплексного снабжения» в качестве оптимального варианта был выбран паяный теплообменник KAORI Е40-26, с залитой в отопительный контур незамерзающей жидкостью на основе пропилен-гликоля. Система обеспечивает температуру теплоносителя на выходе 80 градусов, на входе – 60. Когда нет необходимости отапливать веранду, клиенту достаточно просто выключить насос контура.

Пластинчатые теплообменники за счет своей конструктивной особенности имеют ряд превосходных потребительских характеристик:

  • универсальность (может применяться на различных объектах и использоваться в зависимости от требуемой мощности);
  • экономичность (стоимость теплообменника зависит от количества пластин, количество же пластин подбирается, исходя из требований конкретного объекта);
  • как следствие – компактность (теплообменник подбирается согласно требуемым показателям теплоотдачи, чем меньше перепады – тем меньше пластин используется);
  • ремонтопригодность (в случае повреждения можно обойтись заменой изношенной пластины, а не всего устройства).

Температурный диапазон пластинчатых теплообменников – от -50 до +200 градусов, а рабочее давление – от 10 до 30 бар, в зависимости от материала рамы.

Заказчик поставил задачу подобрать теплообменник для организации отопления коттеджа площадью 152 квадратных метра со стандартной высотой потолков. Температура теплоносителя (греющего контура) от ТЭЦ – 120 градусов на входе в теплообменник, 70 – на выходе. Требовалось рассчитать теплообменник так, чтобы на выходе из теплообменника (нагреваемый контур) получить 90 градусов. Для данного проекта специалисты «Комплексного снабжения» предложили пластинчатый разборный теплообменник КС03.

По каким параметрам осуществляется подбор теплообменника?

  1. Технические характеристики: тепловая нагрузка, расходы рабочих сред, температурный график, допустимые потери давления, максимальные и минимальные рабочие температура и давление, коррозионная агрессивность рабочих сред. Например, чем выше требуемая мощность, тем большими габаритами, количеством пластин и уплотнений будет обладать теплообменник.
  2. Компания-производитель. Зарубежные бренды, такие как Sondex, APV, Swep, Danfoss, Tranter, Funke, Alfa Laval и др. имеют более высокую цену, по сравнению с отечественными аналогами. Исходя из этого, стоимость теплообменника может варьироваться, хотя исходные характеристики будут совпадать. Теплообменники российского производства представлены марками КС, Ридан, ТИ и ТИЖ. Компания-производитель «Комплексное снабжение» использует современные импортные материалы, которые обеспечивают надежность и долговечность теплообменных аппаратов. Производственное оборудование соответствует международным и российским стандартам, а перед сдачей проводятся обязательные гидравлические испытания.
  3. Типы и материалы рам. Рамы теплообменника определяют максимально возможное давление. Изготавливают как «облегченный» тип рам (до 10 бар), так и «усиленный» (до 25-30 бар).
  4. Типы и материалы уплотнений и пластин для теплообменников. Основами пластин выступают титан, нержавеющая сталь (AISI 304, AISI 316), легированная сталь, латунь (специфические среды), медь, сплавы на основе никеля и другие материалы для специфических теплоносителей. Уплотнения в теплообменниках не допускают смешения теплоносителей в контурах теплообмена. По способу исполнения бывают клеевые (с использованием специального клея) или клипсовые (зажимается и фиксируется). Преимуществами клипсового соединения является то, что значительно легче осуществлять замену вышедших из строя уплотнений. На стоимость уплотнений также оказывают влияние многие показатели: сопротивление агрессивным средам, износостойкость, теплостойкость.

И это далеко не полный перечень нюансов, учитываемых при выборе теплообменников. Очевидно, что человеку, не являющемуся профессионалом в данном вопросе, купить теплообменник самостоятельно и сделать корректный выбор будет крайне сложно. В таких ситуациях на помощь придут специалисты компании «Комплексное снабжение». Достаточно отправить заявку на fhouse@sn22.ru, и вы получите качественный расчет именно для вашего объекта с предложением оптимального варианта по соотношению «цена-качество».

Читайте также:  Виды пылеуловителей
Ссылка на основную публикацию