Для чего нужен преобразователь частоты

Для чего нужен преобразователь частоты — задачи и преимущества частотника

    1 commentПринцип работы Декабрь 15, 2016

Частотные преобразователи – это технические устройства, преобразующие входные сетевые параметры в выходные на различных частотах. Современные инверторы переменного тока обладают широким частотным диапазоном.

Асинхронный преобразователь частоты предназначен для преобразования сетевого 3-х либо 1-но фазного переменного тока f 50 Гц в 3-х фазный либо 1-но фазный, f 1 ̴̴ 800 Гц.

Производителями выпускаются электро-индукционные частотники, представляющие собой конструктив:

  • асинхронный электродвигатель;
  • инверторы.

Частотники зачастую используются для плавной регулировки скорости вращения асинхронного двигателя (АД) за счет формирования на выходе частотника заданных параметров сети. В самых простых случаях регулировка f и U выполняется с соответствующей зависимостью V/f, в более навороченных инверторах реализуется как векторное управление.

Электронный преобразователь частоты — это конструктив, который состоит из элементов:

  • выпрямитель, преобразующийI ̴в Iconst;
  • инвертор, преобразующийIconstв I ̴с требуемой частотой и амплитудой.

Выходные тиристоры (транзисторы) служат для обеспечения необходимого тока для электроснабжениядвигателя.

Для поправки U вых. между частотником и электродвигателем другой раз ставят дроссель, а для сниженияпомех — фильтр.

Классификация преобразователей частоты

По типу питающего напряжения преобразователи частоты делятся на разновидности:

  • однофазные;
  • трехфазные;
  • высоковольтные аппараты.

Основную задачу преобразователя частоты можно сформулировать следующим образом: перевод рабочего процесса на экономичный режим с помощью управления скоростью и моментом двигателя, согласно заданным техническим параметрам и характеру нагрузки.

При этом цифровой дисплейприбора показывает такие параметры работы системы, как:

  • величина I и U двигателя;
  • выходные значения частоты, скорости, мощности и момента (f, v, Р и М);
  • отображение состояния дискретных входовдля регулирования скорости вращения вала АД и дистанционного управления системой;
  • продолжительность работы самого частотного преобразователя.

По сфере использования типы инверторы бывают:

  • промышленного назначения мощностью до 315 кВт;
  • ПЧ с векторным управлением мощностью до 500 кВт;
  • для управления механизмами с насосно-вентиляторным типом нагрузки (Р 15 — 315 кВт);
  • частотники для кранов и других подъемных конструкций;
  • для применения в условиях взрывоопасности;
  • устанавливаемые ЧРП прямо на электродвигатель.

Структура частотного преобразователя

Структура современного ПЧ выстраивается по принципу преобразования энергии и включает в себя силовую и управляющую составляющую. Первая, как правило, исполняется на тиристорах или транзисторах, коим отводится роль электроключей. Управляющий блок реализуется на микропроцессорах. С помощью ключей размыкающий и замыкающий цепи он позволяет молниеносно решать множество заданий по диагностике, защите, контролю.

По принципу работы частотные преобразователи бывают двух типов:

  1. с наличием промежуточного звена постоянного тока;
  2. с непосредственной связью.

Всем им присуще ряд достоинств и недостатков, обуславливающих сферу эффективного использования каждого из них.

Непосредственные частотные преобразователи

Они принадлежат к наиболее ранним аппаратам с упрощенной силовой частью,представляющей собой выпрямитель на тиристорах.

Система управления по очереди отмыкает групповые тиристоры и подключает обмотки электродвигателя к сети питания. Непосредственные – это реверсивный тиристорный частотник. Основное его преимущество заключается в том, что он подключается напрямую в сеть без добавочных устройств.

Таким манером получается, что U вых частотника образуется из усеченных отрезков синусоид U вых. На рисунке приведён пример сформировавшегося U вых для одной из фаз нагрузки. На вход тиристоров подаётся 3-х фазное синусоидальные составляющие Uа, Uв, Uс. Напряжение U вых представляется несинусоидальной «пилообразной» формой, которая в аппроксимированном виде выглядит как синусоида (жирная кривая). На чертеже показано, что частота U вых не может быть равной либо превышать частоту сети питания. Поэтому и невелик диапазон управления частоты вращения электродвигателя (менее 1: 10). Ограничивающие пределы не дают возможность использовать подобные частотные преобразователи в навороченных ЧРП. Последние рассчитаны на широкий диапазон регулировкипоказателей.

Применение тиристоров в большей степени усложняет систему управления, и поэтому этого стоимость преобразователя частоты увеличивается.

Выходная «усеченная» синусоида частотника – это источник высокочастотных гармоник, вызывающих добавочные потери в электродвигателе, перегревание электромашины, уменьшение момента, мешающие работе шумы в сети питания. Использование компенсирующих приспособлений повышает цену, массу, размеры, понижает КПД всей системы.

Тем не менее, непосредственные частотные преобразователи радуют пользователей своими определёнными достоинствами. К ним относятся:

  • достаточно большой КПД, достигаемый одним преобразованием электроэнергии;
  • работа в различных режимах, включая с рекуперацией энергии в сеть;
  • надежность, относительная дешевизна, полная управляемость и удобство;
  • наличие возможности неограниченного наращивания мощности системы;

Такие схемы применяются в электроприводах выпуска прошлых лет. В новых конструкциях они на практике не разрабатываются.

Частотные преобразователи со звеном постоянного тока

Это устройства, выполненные по транзисторной или тиристорной схеме. Однако их основная отличительная особенность состоит в том, что корректная и безопасная работа частотника требует наличия звена постоянного напряжения. Поэтому для подключения их к промышленной сети требуется выпрямитель. Обычно, применяются комплектное оборудование, состоящее из частотного преобразователя и выпрямителя, регулируемые от одной системы управления.

В ПЧ этой группы применяется двухступенчатое преобразование электроэнергии: синусоидальное U вх с f = const выправляется в выпрямителе (В), отфильтровывается фильтром (Ф), разглаживается, и далее заново преобразуется инвертором (И) в U ̴. Ввиду двухступенчатого преобразования электроэнергии снижается КПД и несколько ухудшаются массогабаритные показателив сравнении с преобразователями частоты с непосредственной связью.

Для создания синусоидального U ̴ самоуправляющиеся преобразователи частоты. В качестве ключевой базы в них используются усовершенствованная тиристорная и транзисторная основа.

Основным преимуществом тиристорной преобразовательной аппаратуры считается возможность оперироватьс большими параметрами сети, с выдерживанием при этом продолжительной нагрузки и импульсных воздействий. Аппараты обладают более высоким КПД.

Частотные преобразователи на тиристорах на сегодня превосходят остальные высоковольтные приводы, мощность которых исчисляется десятками МВТ с U вых от 3до 10 кВ и более. Однако и цена на них соответственно наибольшая.

  • наибольший КПД;
  • возможность использования в мощных приводах;
  • приемлемая стоимость, невзирая на внедрение добавочных элементов.

Принцип действия преобразователя частоты

Первооснову привода определяет инвертор двойного преобразования. Принцип действия заключается в том, чтобы:

  • входной переменный токсинусоидального типа 380 либо 220В выпрямляется блоком диодов;
  • потом фильтруется посредством конденсаторов для минимизации пульсации напряжения;
  • дальше напряжение подаётся на микросхемы и мосты транзисторов, создающие из него 3-х фазную волнус установленными параметрами;
  • на выходе прямоугольные импульсы превращаются в синусоидальное напряжение.

Как подключить и настроить преобразователь частоты?

Общая схема подключения асинхронного электродвигателя с применением частотного преобразователя в принципе не сложная, так как вся основная разводка заключается в корпусах приборов. Для технаря, владеющего практикой, разобраться в ней не составит сложности. В схеме место для преобразователя выделяется сразу после автоматического выключателя с номинальным током, равным номиналу электрического двигателя. При монтаже преобразователя в 3-х фазную сеть необходимо задействовать трехполюсный автомат,имеющий общий рычаг. При перегрузке это позволит мгновенно отключить все фазы от сети электроснабжения. Ток срабатывания должен быть равным току одной фазы электродвигателя. При однофазном питании, следует выбирать автоматический выключатель, с утроенным значением тока одной фазы.

Во всех случаях, монтаж инвертора должен осуществляться с включением автоматических выключателей в разрыв нулевого или заземляющего провода.

Практически настраивать частотный преобразователь – это значит, проводить подключение жил кабеля к видимым контактам электрического двигателя. Конкретное соединение определено характером напряжения, вырабатываемого непосредственно преобразователем частоты. Для 3-х фазных сетей на промышленных объектах электродвигатель подсоединяется «звездой» — этой схемой подразумевается параллельное подсоединение проводов обмоток. Для бытового применения в однофазных сетях применяется схема «треугольник» (где U вых не превышает U ном больше чем на 50%).

Пульт управления необходимо располагать втам, где будет комфортно пользоваться. Схема подключения пульта обычно отображена в пользовательской инструкции к частотному преобразователю. Перед установкой, до подачи электропитания рычаг нужно перевести в положение «выключено». После того должна загореться соответствующая индикаторная лампочка. По умолчанию для пуска аппарата требуется нажать на клавишу «RUN». Для плавного наращивания оборотов электродвигателя нужно не торопясь повернуть рукоятку пульта. При обратном вращении необходимо переустановить режим посредством кнопки реверса. Сейчас уже можнобудет перевести рукоятку в рабочее положение и установить требуемую скорость вращения. Стоит заметить, что на управляющих пультах отдельных ПЧ указывается не механическая частота вращения, а частота питающего напряжения.

Ради чего нужен преобразователь частоты?

Применение задвижек и регулирующих клапанов в производстве постепенно уходит в прошлое. Пришедшие им на замену асинхронные двигатели выгодно отличаются высокой производительностью и мощностью, но также не лишены характерных недостатков. К примеру, контроль над скоростью вращения ротора требует оснащения добавочными элементами. Пусковые токи превышают номинальные до семи раз. Такая ударная перегрузка отражается на сроке службы агрегата.

Высокоэкономичное функционирование насосов основывается на постоянной регулировке таких технических показателей как температура, давление и расход воды. Оптимизация работы дымососов и вентиляторов требует регулировки температурного режима, давления воздуха и разреженности газов. Экономичность использования станков предусматривается регулировкой скорости вращения двигателя. В конвейерной специфике работы важной особенностью является производительность. Специальные частотные агрегаты предназначены для решения подобных задач.

Для фирмы и предприятий частные преобразователи необходимы в плане:

  • экономии энергетических ресурсов;
  • долгосрочности службы механической и электрической части технологического оборудования;
  • уменьшения денежных затрат на плановые ремонтно-предупредительные процедуры;
  • ведения оперативного управления, принципиального контроля за техническими параметрами и т. п.

Использование частотного привода повышает техническую эффективность производства еще и за счёт высвобождения некоторого оборудования.

Где используются частотные преобразователи?

Аппаратура широко применяется в промышленных и устройствах, где необходимо изменение скорости вращения двигателя, мероприятия по борьбе с амплитудными пусковыми токами или корректирование в регулирующих деталях (комбинации элементарных преобразователей с использованием обратной связи) и т. п. Рассмотрим их применение по мере востребованности:

Насосы. Поскольку потребляется мощность, пропорциональна, как известно, кубу скорости вращения, то использование преобразователя частоты позволяет сэкономитьпотребление электроэнергии до 60 %, в сравнении с методом регулировки мощности посредством заслонок на трубе. Годовое использование частотного преобразователя окупает все затраты на его приобретение. Аппараты позволяют также:

  • снижать тепловые и водные потери на 5 — 10 %,
  • уменьшать количество аварий на трубопроводах;
  • обеспечить полноценную защиту электрического двигателя.

Дополнительным преимуществом является решение проблемы с гидроударами: работающие ПЧ сглаживают пуск/останов насоса. На модернизированных насосных станциях налажены системы, позволяющие управлять насосами групповым методом без необходимости в установке контроллера.

Вентиляторы. Все, вышесказанное для насосов, в полной мере имеет отношение и к вентиляторам. Что касается экономии потребления электричества, она здесь еще более значительна, так как в целях прямого пуска больших вентиляторов зачастую используются более мощные двигательные агрегаты. Усовершенствование технологических установок приводит к повышению рентабельности производства. Экономичность достигается и за счёт уменьшения потерь холостого хода.

Транспортеры. Адаптация скорости перемещения к скорости технологической системы, не являющейся постоянной величиной. Плавный запуск значительно увеличивает ресурс механической части системы, так как ударные нагрузки наносят вред техническому оборудованию.

Область использования преобразователей частоты довольно обширна. Среди управляемых инверторов насосного типа небольшой мощности можно выделить также центробежные насосы, компрессоры, центрифуги, воздуходувки и т. д.

К общепромышленной серии управляемых ЧРП частотников средней мощности относятся двигатели в вентиляторах, дымососах, в системах водоснабжения, смесителях, дозаторах, производственных линиях.

Трудно представить без векторного управления с помощью преобразователей лифтовое и другое подъемно-транспортное оборудование со значительными перегрузками при пуске/остановке.

Использование ПЧ с обратной связью позволяет обеспечить точность скорости вращения, что станет залогом улучшения качества технологического процесса и решения поставленных задач. Известные производители имеют ряд моделей, ориентированных на рабочий режим в замкнутой системе. Техника рекомендована к использованию в деревообрабатывающей промышленности, робототехнике, системах точного позиционирования и др.

Вся перечисленная техника может управляться с помощью преобразователей с аналогово-цифровыми входами/выходами для регулирования, дистанционным контролем и мониторингомпо последовательной линии связи.

Другие преимущества частотников:

  • плавное регулирование скорости вращения двигателя даёт возможность не применять редукторы, вариаторы, дроссели и другую регулирующую аппаратуру, что делает структуру управления проще, дешевле и существенно надёжнее;
  • частотники в составе с АД могут вполне использоваться для замены электроприводов постоянного тока;
  • возможно создание многофункциональных систем управления приводами на базе ПЧ с контроллером;
  • модернизация технологического конструктива может производиться без перерыва в работе.

Заключение

Стоит отметить, что в отдельных случаях применение современного управления производством с помощью частотных преобразователей приводит к снижению не только энергоресурсов, но и потерь транспортируемых веществ. В промышленно-развитых странах уже практически невозможно найти асинхронный электродвигатель без преобразователя частоты.

Мы примерно знаем, как на сегодня обстоят дела у нас, а вот что ждёт нас в будущем? Глядя на ситуацию сквозь призму пользователя, предполагается деление преобразователей частоты на две части: первая будет содержать технику, ориентированную на пользовательского дилетанта и имеющую минимальное количество настроек и максимум автоматических, а во вторую – приборы, имеющие максимальное количество настроек с большими возможностями и рассчитанные на применение специалистами, способными все эти возможности использовать.

Что такое преобразователь частоты и для чего он нужен

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Читайте также:  Что такое ККТ (онлайн автономные кассы) в торговле

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Принцип работы частотного преобразователя для асинхронного двигателя

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Читайте также:  Как выбрать подшипник?

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

Схема частотного преобразователя асинхронного двигателя

Принцип работы частотного преобразователя

Частотные преобразователи: принцип работы

Схема частотного преобразователя

Регулировка оборотов асинхронного двигателя

Устройство и принцип действия частотного преобразователя

Частотный преобразователь — электронное устройство для изменения частоты тока. Оно широко применяется для работы асинхронных электрических двигателей. Использование этого прибора позволяет продлить срок службы механизмов и увеличить экономию электроэнергии.

Достигается это тем, что преобразователь частоты (ПЧ) обеспечивает плавный пуск рабочего режима электрооборудования и его остановку.

Устройство и назначение

Частотный преобразователь представляет собой набор схем, в которых тиристоры или транзисторы функционируют в режиме электронных ключей. Основное управление этими ключами осуществляет микропроцессор, который параллельно выполняет контроль, диагностику и защиту.

Часто преобразователь называют инвертором частотником. Существует два класса оборудования этого назначения:

  1. С прямой связью.
  2. С промежуточным звеном постоянного тока.

По своим характеристикам каждый класс обладает своими преимуществами и недостатками, которые и определяют место их конкретного использования. Управляемый выпрямитель считается основным электрическим устройством в инверторах с прямой связью. Во время работы он отключает тиристоры и подключает статорную обмотку электродвигателей к сети.

Преобразование выходного напряжения происходит за счет участков входного, поэтому их частота не может быть равна или больше питания, поступающего от источника. То есть она находится в пределах от 0 до 50 Гц, что приводит к слишком малому диапазону управления частотой вращения электродвигателя.

Эти параметры не позволяют подобные конструкции использовать в современных, регулируемых по частоте приводах.

Асинхронные электродвигатели требуют сложную регулировку вращения, которую и обеспечивают преобразователи частоты, создающие на выходе высокочастотное напряжение до 800 Гц.


Принцип действия

Если объяснять принцип работы частотного преобразователя, то можно сказать, что применение этого устройства позволяет эффективно и качественно управлять работой мощных асинхронных электродвигателей.

Оборудование представляет собой частотно-регулируемый привод (ЧРП), за счет которого улучшились технические характеристики машин и механизмов. Чтобы изменить число оборотов вала двигателя, необходимо отрегулировать амплитуду напряжения и частоты. Принцип работы преобразователя частоты основан на двух способах:

  1. Скалярное управление — позволяет проводить регулировку согласно линейному закону, когда амплитуда и частота пропорционально зависят друг от друга. То есть изменение частоты влияет на амплитуду поступающего напряжения, которое действует на крутящий момент и коэффициент мощности механизма. Очень важно, чтобы момент нагрузки на валу электродвигателя оставался одинаковым, а отношение напряжения к выходной частоте оставалось неизменным.
  2. Векторная регулировка — позволяет удерживать постоянную нагрузку при любых изменениях частоты. Осуществляет более точное управление, и электропривод мягче реагирует на изменение выходной мощности. Следует учитывать, на момент вращения влияет величина тока статора, точнее, магнитное поле, которое он создает.

Промышленное напряжение поступает на выпрямитель, который сглаживает синусоиды, оставляя пульсации сигнала. Чтобы их ликвидировать и сгладить форму выходного напряжения, предусмотрены в конструкции конденсаторы с индуктивностью.

С выпрямителя сигнал поступает на вход инвертора, состоящего из шести транзисторов с диодами, которые выполняют защитные функции от напряжения обратной полярности. Иногда в схемах могут стоять тиристоры, но они действуют медленнее и с большими помехами.

Чтобы обеспечить плавное торможение вращения, в конструкцию вмонтирован регулируемый транзистор с мощным сопротивлением. По такому принципу работает частотный преобразователь для электродвигателя.

Выпускаемые модели

Во многих областях применяются асинхронные двигатели, работа которых характеризуется высокими показателями устойчивости и безопасности. Это особенно важно, так как любое устройство обладает своими индивидуальными характеристиками, зачем и нужны инверторы, которые обеспечивают оптимизацию параметров их питания. К новой линейке оборудования относятся:

  1. Emotron FDU 2.0 — преобразователь частоты последнего поколения, выпускаемый шведской компанией Emotron. Устройство работает в диапазоне от 0,75 до 1,6 кВт и рассчитано на разные группы напряжения: 3×380 B, 3×500 B, 3×690 B. В основном инвертор используется для насосного или вентиляционного оборудования.
  2. Emotron серии CDU/CDX — оборудование, предназначенное для контроля за работой лифта. Инверторы этой марки устанавливаются как на новые лифты, так и для модернизации старых конструкций. Монтируются в машинном отделении или непосредственно рядом с шахтой.
  3. «Лидер» — преобразователь частоты применяется для управления асинхронными двигателями в насосном, вентиляционном оборудовании, мельницах, дробилках, центрифугах и так далее. Устройство исключает присутствие динамических ударов во время запуска, что позволяет в 1,5—2 раза увеличить срок службы двигателя и приводного механизма.
  4. Easydrive серии Smart — инвертор, обладающий выходной мощностью от 1 Гц до 2 кГц. Отличается автоматическим определением параметров электродвигателя, когда механизм неподвижен. Устройство обладает семью программируемыми входами переключения, которые позволяют выполнять до 30 функций.

Все модели позволяют менять направление вращения вала электродвигателя, экономить основные энергетические ресурсы, снижать эксплуатационные затраты.

Правила подключения и настройки

Для полноценной и эффективной работы инвертора асинхронного электродвигателя его необходимо правильно подключить и настроить. В схему перед частотником устанавливается нужный автоматический выключатель. Если это трехфазная сеть, то выключатель должен быть рассчитан на напряжение 380 В, а сила тока соответствовать номиналу двигателя.

В случае аварийной ситуации в сети на одной фазе, отключены будут и остальные токоведущие проводники. Величина тока разрыва должна соответствовать значению в отдельной фазе электродвигателя. При использовании преобразователя частоты в однофазной сети устанавливается одиночный автоматический выключатель, по номиналу превышающий в три раза значение тока.

В обоих случаях автоматические выключатели не рекомендуется устанавливать в разрыв заземляющего или нулевого проводника, необходимо осуществлять только прямое подключение.

Чтобы подключение было выполнено правильно, идущие от преобразователя токоведущие провода должны быть подключены к соответствующим клеммам двигателя.

Статорные обмотки механизма соединяются «звездой» или «треугольником», в зависимости от того, какое напряжение поступает от инвертора. Если оно совпадает с наименьшим значением на корпусе электродвигателя, то применяется схема «треугольник». При совпадении высокого значения напряжения соединение проводится по схеме «звезда».

Далее, инвертор подключается к контроллеру и блоку управления, который обычно поставляется в комплекте с преобразователем. Все подключения проводятся по схеме, входящей в руководство по эксплуатации оборудования. После выполнения крепежных работ включается автомат и на инвертор подается питание, о чем будет сигнализировать лампочка на пульте.

Для начала работы частотника включается кнопка запуска и осуществляется поворот соответствующей рукоятки. Электродвигатель медленно начнет вращаться. Если необходимо поменять вращение в обратную сторону, то для этого на пульте находится соответствующий тумблер. Чтобы добиться необходимого количества оборотов двигателя, устанавливается необходимая частота напряжения или вращения, в зависимости от модели оборудования.



Что такое частотный преобразователь, основные виды и какой принцип работы

В различных ситуациях может возникнуть необходимость преобразования частоты исходного тока в ток с напряжением регулируемой частоты. Это требуется, например, при работе асинхронных двигателей для изменения их скорости вращения. В этой статье будет рассмотрены назначение и принцип работы частотного преобразователя.

Что такое частотный преобразователь

Частотный преобразователь (ПЧ) – это электротехническое устройство, которое преобразовывает и плавно регулирует однофазный или трехфазный переменный ток с частотой 50 Гц в аналогичный по типу ток с частотой от 1 до 800 Гц. Такие устройства широко применяются для управления работой различных электрических машин асинхронного типа, например, для изменения частоты их вращения. Также существуют аппараты для использования в промышленных высоковольтных сетях.

Простые преобразователи регулируют частоту и напряжение в соответствии с характеристикой V/f, сложные приборы используют векторное управление.

Частотный преобразователь является технически сложным устройством и состоит не только из преобразователя частоты, но и имеет защиту от перегрузок по току, от перенапряжения и короткого замыкания. Также такое оборудование может иметь дроссель для улучшения формы сигнала и фильтры для уменьшения различных электромагнитных помех. Различают электронные преобразователи, а также электромашинные устройства.

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Для чего может быть нужен электродвигателю частотный преобразователь

Применение частотных преобразователей позволяет снизить затраты на электроэнергию, расходы на амортизацию двигателей и оборудования. Их возможно использовать для дешевых двигателей с короткозамкнутым ротором, что снижает издержки производства.

Многие электродвигатели работают в условиях частой смены режимов работы (частые пуски и остановки, изменяющуюся нагрузку). Частотные преобразователи позволяют плавно запускать электродвигатель и снижают максимальный пусковой момент и нагрев оборудования. Это важно, например, в грузоподъемных машинах и позволяет снизить негативное влияние резких пусков, а также исключить раскачивание груза и рывки при остановке.

При помощи ПЧ можно плавно регулировать работу нагнетательных вентиляторов, насосов и позволяет автоматизировать технологические процессы (применяются в котельных, на горнодобывающих производствах, в нефтедобывающей и нефтеперерабатывающей сферах, на водопроводных станциях и других предприятиях).

Использование частотных преобразователей в транспортерах, конвейерах, лифтах позволяет увеличить срок службы их узлов, так как снижает рывки, удары и другие негативные факторы при пусках и остановке оборудования. Они могут плавно увеличивать и уменьшать частоту вращения двигателя, осуществлять реверсивное движение, что важно для большого количества высокоточного промышленного оборудования.

Преимущества частотных преобразователей:

  1. Снижение затрат на электроэнергию: за счет снижения пусковых токов и регулирования мощности двигателя исходя из нагрузки;
  2. Увеличение надежности и долговечности оборудования: позволяет продлить срок эксплуатации и увеличить срок от одного технического облуживания до другого;
  3. Позволяет внедрить внешний контроль и управление оборудованием с удаленных компьютерных устройств и способность встраивания в системы автоматизации;
  4. Частотные преобразователи могут работать с любой мощностью нагрузки (от одного киловатта до десятков мегаватт);
  5. Наличие специальных компонентов в составе частотных преобразователей позволяет защитить от перегрузок, обрыва фазы и короткого замыкания, а также обеспечить безопасную работу и отключение оборудования при возникновении аварийной ситуации.
Читайте также:  Какую лампу можно поставить в проектор?

Конечно, глядя на такой список достоинств можно задаться вопросом, почему бы их не использовать для всех двигателей на предприятии? Ответ тут очевиден, увы, но это высокая стоимость частотников, их монтаж и наладка. Не каждое предприятие может позволить себе эти расходы.

Что нужно знать для правильного выбора преобразователя частоты?

1. Что такое частотный преобразователь и в каких случаях он применяется

Преобразователь частоты предназначен для управления скоростью вращения трехфазного асинхронного электродвигателя с короткозамкнутым ротором.

Внешний вид частотных преобразователей

Частотные преобразователи применяются в следующих случаях:

  • при необходимости изменения скорости вращения электродвигателя;
  • при необходимости поддержания значения технологического параметра (например, давления) посредством изменения скорости вращения электродвигателя;
  • отсутствует питание 380В. Частотные преобразователи с питанием 220В поставляются на мощность до 2,2кВт включительно. Мощность двигателя при этом не теряется (Если двигатель имеет возможность переключения «звезда-треугольник» 380/220, то он может быть включен от однофазной сети 220В);
  • требуется подключение к промышленной сети двигателей с “нестандартным” напряжением питания и частотой.

Кроме основных функций, ПЧ обеспечивает

  • возможность включения реверса без дополнительного оборудования;
  • ограничение пускового тока двигателя;
  • контроль тока двигателя;
  • плавный разгон и торможение (настраиваемые по времени);
  • дополнительную защиту двигателя;
  • возможность пропуска резонансных частот;
  • стабилизацию момента двигателя даже при колебаниях входного напряжения;
  • возможность остановки с замедлением;
  • возможность экономии электроэнергии при частично загруженном двигателе (даже без датчика обратной связи);
  • работу со встроенным таймером и счетчиком;
  • переход в “спящий режим” с отключением насоса при отсутствии водопотребления;
  • возможность автоматического перезапуска при восстановлении питания.

Все перечисленные параметры (функционал) поддерживают преобразователи частоты ELHART серии EMD-MINI и EMD-PUMP.

2. Подбор частотного преобразователя

Преобразователь частоты для однофазного двигателя

Стоит обратить внимание, что стандартные частотные преобразователи не предназначены для работы с однофазными двигателями. Почти все представленные на рынке частотные преобразователи предназначены для управления скоростью вращения трехфазного асинхронного электродвигателя с короткозамкнутым ротором.

Чаще, когда говорят “однофазный преобразователь частоты”, имеют ввиду частотный преобразователь с питанием от однофазный сети напряжением 220В. Такой преобразователь имеет на выходе 3 фазы по 220В и также предназначен для управления трехфазным асинхронным двигателем.

Тем не менее, преобразователи частоты для однофазных двигателей существуют, но встречаются крайне редко.

Рисунок 1 — ПЧ для трехфазного двигателя

Подбор частотного преобразователя по мощности

При подборе преобразователя в первую очередь нужно ориентироваться на ток и напряжение питания электродвигателя. Эта информация указывается на шильдике двигателя.

Рисунок 2 — Шильдик двигателя

  1. Напряжение на обмотках. Двигатель, шильдик которого показан рисунке 2, способен работать при трехфазном напряжении 220В (обмотки должны быть соединены в схему «треугольник») и при трехфазном напряжении 380В (соединение «звезда»). Если на шильдике указано 380/660, то такой двигатель может быть подключен к ПЧ с питанием 220В, но в таком случае не будут обеспечены номинальные характеристики двигателя.
  2. Номинальный линейный ток двигателя. Данный двигатель потребляет 1,44А при подключении треугольником (питание 220В) и 0,83А при подключении звездой (питание 380В).

Остальная информация, приведенная на шильдике электродвигателя, не влияет на выбор ПЧ.

Несмотря на указанный на шильдике двигателя ток, наиболее правильным методом определения рабочего тока является его непосредственное измерение при работе двигателя. Это позволит избежать проблем в случае работы двигателя при повышенном токе. Фактический длительный рабочий ток двигателя не должен превышать номинальный выходной ток преобразователя.

Купить частотный преобразователь подобрав его по мощности двигателя не правильно, так как мощность двигателя зависит от КПД и коэффициента мощности (cosφ), а указанная на электродвигателе мощность относится к механической мощности двигателя на валу, а не к потребляемой от источника питания активной мощности, как это принято для других потребителей электроэнергии.

Таблица 1 – Электрические характеристики двигателей

ДвигательМощность, кВтОб/минТок при Δ220/Y380 ВКПД, %Коэф. Мощн.IП/IН
АИР 80 А21,530006,2 / 3,678,50,856,5
АИР 80 В415006,8 / 3,978,50,805,3
АИР 90 L610007,3 / 4,2760,705,0

Двигатель АИР 90 L6 (1000 об/мин) при одинаковой с частотным преобразователем мощности потребляет в номинальном режиме ток 4,2 А при питании 380 В, а преобразователь имеет номинальный выходной ток 4,0 А.

При соединении этого же двигателя в «треугольник» с питанием 220 В номинальный ток составит 7,3А, а преобразователь частоты рассчитан на 7,0А. Следовательно, как при питании 380В, так и при 220В указанный двигатель необходимо подключать к частотному преобразователю мощностью на ступень выше (2,2кВт):

Благодаря частотному преобразователю есть возможность подключать двигатели с “нестандартным” питанием к промышленной сети 220 или 380В. При этом главное, чтобы номинальное напряжение питания двигателя не превышало питание ПЧ, а номинальная частота поддерживалась ПЧ.

Например, машинка для стрижки овец МСУ-200 питается от переменного напряжения 36В частотой 200Гц. Для работы с такой машинкой в настройках преобразователя частоты задается номинальное напряжение питания двигателя — 36В и номинальная частота двигателя — 200Гц.

Несмотря на мощность электродвигателя 115Вт, рабочий ток составляет около 3А. Кроме номинального тока двигателя необходимо учитывать амплитуду, частоту и длительность возможных перегрузок. В моменты перегрузок ток указанной машинки может доходить до 7А.

Частотный преобразователь ELHART EMD-MINI выдерживает перегрузку 150% от номинального тока в течение 60 секунд; EMD-PUMP – 120% в течение 60 секунд.

Следовательно, номинальный ток ПЧ должен быть не менее 7 ÷ 150% = 4,7А. Для подключения к сети 220В выбираем преобразователь частоты ELHART EMD-MINI – 007S (0,75кВт, 5А, 220В). Для подключения к сети 380В выбираем ПЧ ELHART EMD-MINI – 022T (2,2кВт, 5А, 380В).

Обратите внимание: при небольшом запасе по току в данном примере, мощности ПЧ в 6 и 20 раз больше мощности соответствующего двигателя!

Выбор между векторным и вольт-частотным режимом управления

По режиму управления частотные преобразователи можно разделить на вольт-частотные и векторные. Рассмотрим особенности работы этих режимов.

Вольт-частотный (или скалярный) режим управления ПЧ

  • Поддерживает постоянной величину магнитного поля статора при заданной частоте (отношение напряжения питания к частоте постоянно). Это значит, что при различных скоростях номинальный момент на валу двигателя останется неизменным. Есть особенности работы на низких частотах. Подробности расписаны в разделе “Возможный диапазон регулировки частоты вращения двигателя с помощью ПЧ”;
  • Скорость вращения двигателя зависит от приложенной нагрузки: при увеличении нагрузки двигатель замедляется, при уменьшении — ускоряется. При постоянной нагрузке скорость вращения не изменяется;
  • Позволяет работать с несколькими двигателями одновременно (для работы с несколькими двигателями необходимо обеспечить дополнительную защиту по току для каждого двигателя).

Векторный режим управления ПЧ:

  • поддерживает постоянную скорость вращения при изменяющихся нагрузках (за счет автоматической регулировки выходного напряжения);
  • более стабильно работает при низких частотах (за счет компенсации падения напряжения в обмотках двигателя).

Особенности работы векторного режима:

— возможно изменение скорости вращения при постоянной нагрузке в пределах 2Гц (вследствие поиска оптимального напряжения). Это нормально и не является неисправностью;
— возможна работа только с одним двигателем (не поддерживает многодвигательный режим);
— работает корректно, если правильно введены паспортные данные двигателя и успешно прошло его автотестирование.

И вольт-частотный и векторный режимы управления при наличии встроенного ПИД-регулятора способны точно поддерживать технологический параметр по датчику обратной связи (скорость, давление, влажность, температуру и другие).

Как правило, для большинства применений достаточно использования вольт-частотного режима. Такими применениями являются насосы, вентиляторы, конвейеры, деревообрабатывающие станки, высокоскоростные шпиндели фрезерных станков, простые куттеры, прессы, упаковочные станки, фасовочные аппараты, дозаторы, компрессоры и другое оборудование.

Векторный режим обычно применяется при работе с подъемно-транспортными механизмами, на дробилках, буровом оборудовании и другими нагрузками, где требуется высокий момент в области низких частот и при запуске, а также нет четкой зависимости момента нагрузки от скорости вращения.

Поддерживаемые способы управления преобразователем частоты

Так как преобразователь частоты обычно устанавливается в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто преобразователь устанавливается рядом с двигателем, а пульт оператора находится в стороне.

С помощью выносного пульта управления EMD-Mini — RCP (не входит в комплект поставки) можно реализовать дистанционное управление преобразователем частоты EMD-Mini на расстоянии до 2 метров. Выносной пульт имеет абсолютно те же функции и возможности, что и панель управления на самом частотном преобразователе.

В частотных преобразователях ELHART серии EMD-PUMP встроенный пульт является съемным и имеет возможность выноса с помощью входящего в комплект двухметрового кабеля.

Для дистанционного управления пуском и остановом двигателя с помощью кнопок и переключателей необходимы дискретные входы.

Наличие аналогового входа позволяет дистанционно осуществлять плавную регулировку оборотов с помощью потенциометра или аналогового сигнала 0. 10В/4. 20мА. Совместно со встроенным ПИД-регулятором аналоговый вход позволяет непрерывно поддерживать значение технологического параметра (давление, расход, температура и т. д.)

Наличие интерфейса RS-485 либо RS-232 позволяет подключиться к верхнему уровню АСУТП.

Программный режим позволяет изменять скорость и направление вращения по заранее заданной программе.

Подбор частотного преобразователя для насоса

Отдельное внимание стоит уделить частотным преобразователям насосной серии. От остальных преобразователей их отличает заложенный алгоритм работы с несколькими двигателями. А именно: чередование двигателей и каскадный режим. Режим чередования применяется для равномерного износа двигателей. Каскадный режим применяется, когда необходимо с помощью одного частотного регулятора управлять несколькими насосами. Особенность каскадного режима заключается в том, что частотный преобразователь небольшой мощности способен регулировать производительность или давление в широком диапазоне, включая в работу минимально необходимое количество насосов. Преобразователи частоты ELHART EMD-PUMP могут управлять группой от 2 до 7 насосов. Возможна работа с насосами разной мощности, в таком случае мощность ПЧ определяется наиболее мощным насосом.

Дополнительное оборудование

В некоторых случаях при использовании преобразователя частоты может потребоваться установка дополнительного оборудования:

  • Тормозной резистор необходим для рассеивания энергии, поступающей в ПЧ от двигателя, который работает в генераторном режиме. Тормозной резистор используется для обеспечения быстрой остановки или замедления двигателя (особенно с высокоинерционными нагрузками), при работе с подъемно-транспортными механизмами (краны, лифты, наклонные транспортеры, подъемники), высокоинерционными применениями (дымососы, центрифуги, рольганги, тягодутьевые механизмы, транспортные тележки), в применениях, где важна точность позиционирования.
  • Моторный дроссель устанавливается при расстоянии между двигателем и преобразователем более 30м; защищает двигатель от импульсных токов, уменьшает помехи, ограничивает амплитуды тока короткого замыкания, снижает скорость нарастания тока КЗ и, как следствие, улучшает защиту преобразователя от КЗ.
  • Сетевой дроссель подключается ко входу преобразователя и является двухсторонним буфером между сетью электроснабжения и преобразователем частоты. Защищает от пиковых скачков напряжения в сети. Установка сетевого дросселя рекомендуется при нестабильных параметрах сети (пульсация, провалы напряжения), при перекосе фаз более 3%, если мощность источника питания (распределительного трансформатора) более 500 кВА и превышает в шесть и более раз мощность преобразователя или если длина кабеля между источником питания и ПЧ менее 10м. Использование сетевых дросселей значительно повышает срок службы и надежность работы частотных преобразователей.

3. Диапазон регулирования скорости вращения двигателя при использовании преобразователя частоты

Использование ПЧ для уменьшения скорости вращения двигателя

Для работы на низких частотах (ниже 10-15 Гц) необходимо особое внимание уделить охлаждению двигателя и моменту на валу.

Электродвигатель закрытого типа с вентиляторным охлаждением (TEFC) имеет охлаждение только за счет встроенного вентилятора. Производительность вентилятора охлаждения уменьшается пропорционально скорости вращения двигателя. При занижении оборотов двигателя эффективность охлаждения снижается, что приводит к перегреву двигателя и возможному выходу из строя.

Существует несколько вариантов охлаждения электродвигателя при работе на низких частотах:

  • сократить период непрерывной работы двигателя на низкой частоте
  • организовать дополнительное охлаждение;
  • уменьшить нагрузку на валу двигателя;
  • установить понижающий редуктор, что позволит повысить обороты двигателя;
  • использовать двигатель большего типоразмера.

Вольт-частотный метод регулирования позволяет сохранять постоянный момент на валу двигателя при различных скоростях. При работе на низких частотах (ниже 5-10 Гц) момент на валу будет зависеть от характеристики конкретного двигателя (активного сопротивления обмоток). Для сохранения момента на частотах ниже 5-10 Гц может потребоваться корректировка минимального напряжения кривой U / f. Увеличение значения напряжения вызовет увеличение пускового момента, но также приведет к увеличению потребляемого тока, а пропорционально увеличению протекающего тока усиливается нагрев. Рекомендуемый диапазон регулирования частоты при вольт-частотном управлении: 5-50 Гц. Преобразователь частоты ELHART EMD-MINI поддерживает регулировку частоты от 0,5 до 999,9 Гц.

Векторный метод регулирования способен более точно поддерживать момент при низких частотах (особенно при изменяющейся нагрузке). Диапазон возможной регулировки шире, чем у вольт-частотного режима и зависит от конкретной модели (фирмы, серии) ПЧ. Для векторного управления рекомендовано использовать преобразователи частоты Delta Electronics серии VFD-E и VFD-C.

Для увеличения пускового момента рекомендуется использовать частотный преобразователь большей мощности (так как преобразователь может обеспечить двигатель только полуторократным током (номинальный ток × перегрузочную способность ПЧ).

Использование ПЧ для увеличения скорости вращения двигателя

Преобразователь частоты можно использовать для увеличения скорости вращения двигателя выше номинальной. При этом важно учесть, что при увеличении частоты выше номинальной, момент (Т) уменьшается пропорционально квадрату отношения напряжение/частота. При частоте f = 70 Гц момент на валу уменьшается в 2 раза T = 0,5 × Tном; при частоте f = 100 Гц момент уменьшается в 4 раза T = 0,25 × Tном. Следовательно, увеличивается риск перегрузки двигателя. Кроме того, увеличивается нагрузка на подшипники.

Инженер ООО «КИП-Сервис»
Рыбчинский М.Ю.

Ссылка на основную публикацию