Что нужно для солнечной электростанции?

Электростанция на солнечных батареях своими руками

Дата публикации: 25 января 2019

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Автономная солнечная электростанция для дома своими руками

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности — количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей статье.

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать контроллер заряда, который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Как выбрать аккумулятор

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% — для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока — постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Другие схемы солнечных электростанций своими руками

Гелиостанции — это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Лайфхак из личного опыта. Для тех, кто в первые решил собрать панель, не тратьте деньги на дорогие запчасти, а найдете в ВК сообщество, где можно приобрести бу панели (со сколами) и попробуйте например запитать 1 комнату для на чала!!

Очень интересная разработка, при чем думаю что очень экономит бюджет. Один только вопрос, а во сколько обходится это все производство, хотя бы примерно? Хочу себе на дом такие же солнечные батареи!

Вам нужно войти, чтобы оставить комментарий.

Как работает сетевая солнечная электростанция. Разбор на примере.

И так, к нам поступает много вопросов, как же работает сетевая солнечная электростанция, если в ней нет аккумуляторных батарей. Основной плюс сетевой солнечной электростанции, как раз, в отсутствии аккумуляторных батарей. Такой формат станции, не даст вам полной автономии и независимости от городской сети, но именно такой формат оптимален и практически безальтернативен, если главная задача для вас – это экономия электроэнергии и снижение счетов за электричество. Отсутствие аккумуляторных батарей, значительно удешевляет станцию, по сравнению с гибридными (аккумуляторными) системами и позволяет достичь длительного срока эксплуатации минимум – 25 лет. Добавление в систему аккумуляторов возможно, но это влечет за собой увеличение цены, почти в два раза и, к сожалению, снижению надежности, т.к. наиболее часто используемые в системах гелевые(GEL) и AGM аккумуляторы, необходимо будет заменить уже через 5 лет, что значительно увеличит срок окупаемости системы. Можно рассмотреть вариант установки литиевых или карбоновых аккумуляторов, с реальным сроком службы выше 10 лет, но в таком случае стоимость системы вырастет еще больше и, соответственно, также значительно увеличит срок окупаемости. Хотя отметим, что новые карбоновые аккумуляторные батареи, в настоящее время наиболее эффективный вариант (количество циклов (2500 при DoD 80%) в 8 раз выше, чем у GEL и AGM аккумуляторов), но мы рекомендуем их использовать в тех системах, где обязательно требуется защита от отключений электроэнергии и нужна максимальная автономия. Поэтому мы всегда рекомендуем сначала определиться с задачей, которую вы ставите перед покупкой солнечных модулей:

  • Если главная задача – экономия электроэнергии, то оптимальный вариант это безаккумуляторная сетевая солнечная электростанция (grid-tie)
  • Если вам необходима дополнительная защита от отключений электроэнергии то – гибридная солнечная электростанция(on-grid). Где сетевая солнечная электростанция, дополняется бесперебойной аккумуляторной системой

И так, как же работает сетевая солнечная электростанция. Солнечные батареи являются первым источником электроэнергии, основная сеть вторым. Сетевой солнечный инвертор, всегда”опирается” на внешнее напряжение городской сети 220/380 В. Получаемую от солнечных модулей энергию он приоритетно направляет на питание нагрузок (ваши электроприборы), подстраиваясь под синусоиду сети, чуть повышая напряжение на стороне потребителя, за счет этого снижая ток, который идет от города, т.е. от города мы ничего не потребляем (счётчик не крутится). В любой момент времени солнечная энергия используется приоритетно. Экономия происходит в тот период, когда светит солнце, то есть днём. А значит мы будем экономить на более высоком дневном тарифе.

Приведём пример: мы устанавливаем сетевую солнечную электростанцию мощностью 3 кВт в Подмосковье, дневной тариф на э/э равен 7 рублям за 1 кВт*ч, с НДС.

Основные элементы системы:

Солнечные модули установлены на южном скате кровли с углом 42 градуса.

Почасовое потребление на объекте соответствует следующему графику:

Суммарно в сутки, тратится около 30 кВт*ч. Основное потребление днем и вечером.

Теперь приводим график выработки сетевой солнечной электростанции 3 кВт, с учетом данных NASA Surface Solar Energy and Meteorology Center, по приходу солнечной инсоляции для летнего дня в Подмосковье.

Общая суточная выработка составит примерно 16-18 кВт*ч.

Совместив графики, мы можем увидеть на сколько солнечная энергия сможет обеспечивать потребление на объекте (заместить основную сеть).

Результат: в дневное время станция сможет практически полностью покрывать потребление на объекте, то есть в полдень счетчик будет стоять на месте, т.к. солнце обеспечит всех потребителей (приборы) электроэнергией, ближе к вечеру замещение будет пропорционально снижаться.

Суммарно за сутки мы сэкономим более 50% потребления электричества на объекте. Цифры в 100% добиться невозможно, т.к. написано ранее, система не сможет замещать ночное потребление. Но, в данном случае, мы как раз экономим на дорогом дневном тарифе, пренебрегая более дешевым вечерним.

Экономия, за рассмотренные сутки, в денежном эквиваленте составит:

В сутки СЭС сэкономит

140 рублей. В месяц

4.200 рублей. В год

26.600 рублей (т.к. зимой станция будет вырабатывать и экономить меньше).

С учетом этих данных, срок окупаемости станции составит около 6 лет. И здесь мы не учитываем ежегодный рост тарифов (с нашим прогнозом вы можете ознакомиться здесь). Если брать в расчет, ежегодное подорожание на 5%, срок окупаемости составит менее 5 лет.

Также, отметим, что чем мощнее вы выберете станцию, тем дешевле выходит установочная цена за 1 кВт, следовательно, и срок окупаемости становится еще меньше.

Очень хорошая новость, что 6 февраля 2019 года, в первом чтении был принят закон по стимулированию микрогенерации, в нашей стране будет введен долгожданный “зеленый тариф”, в шестимесячный срок будут сформированы правовые документы и размер тарифа, и все это также значительно снизит сроки окупаемости сетевых солнечных электростанций.

ПОЧЕМУ НУЖНО ВЫБРАТЬ ИМЕННО НАС.

Компания АЛЬТЭКО работает на рынке альтернативной энергетики с 2010 г. и выполняет полный спектр услуг по созданию систем автономного и резервного электроснабжения на базе возобновляемых источников энергии. За время работы мы накопили огромный опыт, в общей сложности было смонтировано свыше 500 систем автономного и резервного электроснабжения на территории Российской Федерации и за рубежом. Общая установленная мощность солнечных модулей составляет свыше 5 МВт.

Читайте также:  Как сделать бесперебойник?

Наша компания двухкратный финалист Международной премии “Малая энергетика – большие достижения” 2017 г. и 2018 г. в номинации “Лучший проект в области альтернативной энергетики”.

  • 2017 г. проект солнечной электростанции 10 кВт для детского центра в с.Хрюг, Респ.Дагестан.
  • 2018 г. проект сетевой солнечной электростанции 40 кВт в Парке Зарядье, г.Москва. Проект вошел в тройку призеров, на равне с проектами компании РусГидро и Hevel.

Мы обладаем большим опытом по строительству сетевых солнечных электростанций(СЭС), нашей компанией смонтированы:

  • 2018 г. Сетевая солнечная электростанция 40 кВт в Парке Зарядье.
  • 2016 г. Сетевая солнечная электростанция 220 кВт в г.Зеленоград. Крупнейшая на данный момент частная солнечная электростанция в России.
  • 2016 г. Сетевая солнечная электростанция 10 кВт на о.Сардиния, Италия.
  • 2017 г. Сетевая солнечная электростанция 40 кВт в г.Кимры. Использовались солнечные модули SERAPHIM ECLIPSE SRP-290-E11B, выполненные по новой технологии с КПД свыше 17% и не имеющие аналогов на российском рынке.
  • в период с 2010 по 2019 г. нашими специалистами суммарно установлено 2 МВт солнечных электростанций, для предприятий и частных домохозяйств. Минимальная мощность установленной СЭС – 1 кВт, максимальная мощность – 220 кВт.

Наша компания является официальным поставщиком крупнейших мировых производителей:

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

В 2017 году я установил на участке одну солнечную батарею мощностью 260Вт для выработки электроэнергии. В июне выработка панели составила 34кВт электроэнергии, что в 4.5 раза превысило её нормативную мощность.

Далее я расскажу о том, как работает солнечная электростанция, из каких элементов состоит, кому подойдет и как её подключить. Кроме того, поделюсь реальной статистикой выработки одной панели.

Кому подойдет домашняя солнечная электростанция

  1. Тем, у кого на участке нет электричества. Солнечные батареи смогут автономно обеспечивать объект электроэнергией. В качестве альтернативы также можно рассматривать ветряк (для которого должна быть соответствующая роза ветров) или дизельный генератор (который не очень удобен в эксплуатации и неэкономичен).
  2. Также солнечную станцию можно рассматривать как инвестицию, чтобы на фоне постоянно растущих тарифов в будущем меньше платить за электроэнергию. К тому же срок службы батарей очень большой, а солнце светит всегда.
  3. И последний вариант — всем, кто хочет заработать. В Украине существует закон о зеленом тарифе, согласно которому государство выкупает выработанную электроэнергию с помощью альтернативных источников энергии по особой цене.

Как устроена солнечная батарея

Солнечная батарея (или ФЭМ – фотоэлектрический модуль) работает за счет кремниевых элементов, которые преобразовывают световую энергию в электрическую (в отличие от солнечных коллекторов, которые работают за счет солнечного тепла).

Сзади у панели есть выход двух кабелей, которые подключатся на инвертор или аккумулятор, в зависимости от схемы использования (об этом далее подробнее).

Как подключить, если на участке нет электричества

Если участок не подключен к сети, то главная задача — накапливать электроэнергию, чтобы использовать её в будущем по мере необходимости.

Какое оборудование понадобится:

  • Солнечные батареи.
  • Аккумулятор для накопления заряда.
  • Контролер заряда (чтобы контролировать ток заряда аккумулятора).
  • Преобразователь в 220В. По умолчанию солнечная панель выдает 12В, 24В, тогда как большинство электроприборов подключаются к 220В. Если вы используете приборы, работающие от 12В, то преобразователь не понадобится.
  • Оборудование для фиксации и крепежа самой батареи.

Самый простой вариант, «своими руками»

Самый примитивный, но рабочий вариант «для дачи»: солнечная батарея + аккумулятор, которые соединяются между собой клеммами. В таком виде станция уже готова к эксплуатации и её можно даже не ставить на крышу, а просто установить на землю. Электроэнергия будет накапливаться на аккумуляторе, от которого можно зарядить телефон, подключить освещение и т.д.

Такую станцию очень легко собрать своими руками. Достаточно просто купить аккумулятор (подойдет даже обычный автомобильный), солнечная батарея, провода и клеммы. Если вы приезжаете на дачу только по выходным, то станция может быть переносной, так как легко разбирается и прячется (или увозится с собой).

Более сложная реализация

Схема для повседневной эксплуатации и разводкой по розеткам. Солнечные батареи устанавливают на крышу (или отдельную металлическую конструкцию), а кабель от них прокладывают к аккумулятору, от которого электричество через преобразователь поступает на розетки.

По мере необходимости станцию легко масштабировать, подключая дополнительные батареи и аккумуляторы.

Как подключить, если на участке есть электричество

Если участок подключен к сети, то установка солнечной электростанции сделает дом более энергонезависимым, позволит сократить затраты на электроэнергию и даже заработать на этом благодаря зеленому тарифу.

В этой схеме подключения отсутствует аккумулятор, так как не нужно накапливать электроэнергию (но если вы хотите иметь резервный источник питания на случай выключения света, то аккумулятор необходим).

Для подключения такой станции нужна только солнечная батарея (или несколько), которая через сетевой инвертор подключается в розетку. В таком виде станция уже готова к работе. Батарея вырабатывает электричество и вы сразу же его потребляете для внутренних нужд: работы холодильника, освещения, чайника и т.п.

Например, выработка станции в сутки — 1кВт электроэнергии, а здание суммарно потребляет 5кВт. По факту из сети вы берёте лишь 4кВт. Но если станция вырабатывает в сутки 5кВт, а вы реально потребляете только 2кВт, то остаток (3кВт) сгорает. В этом случае можно подключить зеленый тариф и продавать разницу государству по более высокой цене, либо же поставить аккумулятор и накапливать избыток на него.

Сейчас существуют компании которые подключают зеленый тариф «под ключ». Начиная от подбора и установки станции, до заключения договора с ОБЛЭНЕРГО.

Реальная выработка солнечной электростанции для дома

Выработка зависит от мощности и угла наклона панелей, интенсивности солнца и продолжительности светового дня.

Между собой батареи отличаются площадью, что отражается на их мощности. Это может быть 10Вт, 100Вт, 150Вт, 260Вт и так далее. Однако реальная выработка панели обычно выше её номинальной мощности, так как необходимо учитывать коэффициент интенсивности солнца. В южных регионах солнце светит сильнее и дольше, а в северных слабее и меньше, поэтому одна и та же панель вырабатывает разное количество электроэнергии.

Пример из практики

Это график выработки электроэнергии одной панелью мощностью 260Вт за июнь 2018 года. Суммарная выработка станции за месяц — 34,89 кВт. Из расчета, что номинальная месячная мощность батареи — 7,8кВт (260Вт Х 30 дней), её фактическая мощность оказалась в 4.5 раза выше (поправочный коэффициент). Летом он больше, зимой – меньше или вообще отсутствует.

Из графика видно, что выработка непостоянна и присутствуют резкие спады – это пасмурные дни, когда световой день короче, а солнечная активность очень слабая. Худшая производительность была зафиксирована 17.06 — около 0.4кВт, а максимальная 25.06 — около 1.4кВт.

А вот так выглядит выработка солнечной батареи по часам в течение дня:

Выработка начинается ближе к 9 утра, достигает пика к 13:00, затем постепенно снижается и прекращается около 19:00. В течение дня есть небольшие провалы — когда солнце было закрыто облаками.
Примерно с 13:00 до 15:00 выработка электроэнергии была нестабильна из-за облачности. Но и это не сильно сказалось на итоговой производительности станции — 1.32кВт.
В течение дня было множество провалов, что и отразилось на итоговой выработке станции — 0.98кВт.
А это пасмурный дождливый день, когда солнечная активность очень слабая и выработка в течение дня составила 0.45кВт.

Из этого можно сделать вывод, что целиком полагаться на солнечную электроэнергию сложно. Производительность станции сильно зависит от интенсивности солнца и даже летом она может быть непостоянна из-за пасмурной погоды.

Угол наклона солнечной батареи

Панель вырабатывает максимум электроэнергии тогда, когда солнечные лучи падают на неё под прямым углом. В этом случае лучи практически не отражаются и потери энергии минимальны. Но так как солнце в течения дня постоянно движется и меняет высоту, то поддерживать постоянным угол падения в 90° сложно.

Для этого существуют специальные механизмы, которые поворачивают панель вслед за солнцем в течение дня и изменяют угол её наклона, что дает максимально возможную выработку электроэнергии. Однако для домашней станции они нецелесообразным: при малой мощности станции дополнительные 5-15% электричества не покроют затраты на их установку.

Поэтому рекомендуется универсальное положение солнечной панели: для северного полушария направление на юг (которое охватывает максимальную траекторию движения солнца) и угол наклона в 30 ° на лето и 60 ° на зиму. Либо же средний вариант в 45 °, если панель работает круглый год.

Как рассчитать мощность электростанции на солнечных батареях

Оттолкнуться нужно от того, сколько электроэнергии вам нужно для нормального функционирования здания. Самый простой способ — выписать все эл. приборы, которые вы планируете использовать, время их работы и потребляемую мощность.

Пример:

  • Холодильник: 100Вт – 24ч – 2400Вт
  • Освещение: 100Вт – 5ч – 500Вт
  • Чайник: 15мин – 1,5кВт – 0,03кВт
  • Стиральная машина:
  • Ноутбук:
  • .
  • Итого: 3кВт

3кВт — это мощность, которую должна производить солнечная электростанция для нормальной жизнедеятельности здания. Т.е. понадобится 12 панелей мощностью по 260Вт. На практике их производительность будет выше (при коэффициенте солнечной активности 4.5 суточная выработка станции составит 14кВт), однако мы отталкиваемся от самого пессимистичного сценария, при котором каждый день — пасмурный. Также учитывайте: если вы не подключены к зеленому тарифу или не запасаете энергию на аккумулятор, то избыток будет сгорать.

Если вы устанавливаете солнечную электростанцию для заработка на зеленом тарифе, то начать можно с любой мощности и постепенно её наращивать.

Заключение

Солнечные электростанции для дома решают две основные задачи:

  • могут обеспечивать электроэнергией участок, который не подключен к сети. В самом простом варианте вам понадобится только панель, аккумулятор и контролер заряда, которые уже способны генерировать электроэнергию. Также возможна более сложная реализация, когда станция генерирует электричество и через инвертор передает его в розетки. В этой схеме дополнительно необходим преобразователь из 12В в 220В.
  • служить инвестицией и источником дохода. В Украине существует закон о зеленом тарифе, согласно которому государство готово покупать у населения электроэнергию, выработанную на альтернативных источников энергии, по более высокому тарифу. Другими словами: каждый может установить в доме солнечную электростанцию и продавать электроэнергию государству.

Производительность станции зависит от мощности панели и коэффициента интенсивности солнца. Для южных регионов, где солнце светит долго и интенсивно, выработка панелей может быть в 4.5 — 5 раз больше номинала. Зимой коэффициент практически отсутствует.

При пасмурных днях даже летом выработка сильно падает. Поэтому целиком полагаться на солнечную энергию не стоит (особенно если у вас автономное энергообеспечение объекта) и не лишним будет иметь резервный источник, например — дизельный генератор.

Солнечные батареи своими руками. Расчет и выбор солнечных элементов

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

Читайте также:  Как проверить емкость аккумулятора 18650

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно спорят по этому поводу. Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Не знаю, кто это аморфные рекламирует. КПД у них низкий, места почти в два раза больше занимают, при этом с возрастом КПД, так же, как и у кристаллических, снижается. Классические модули рассчитаны на 25 лет эксплуатации с потерей КПД в 20%. Плюс у аморфных пока только один: выглядят, как черное стекло (можно весь фасад такими покрыть).

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Читайте также:  Монтаж дизельных электростанций

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

О самых популярных альтернативных источниках энергии вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном строительству автономного дома, можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.


Солнечные электростанции своими руками.

С подорожанием электроэнергии очень многие люди стремятся перейти на использование альтернативных источников энергии. Этому способствует также множество недостатков центральных электросетей частных домов и коттеджей.

Содержание:

Если в городе электричество распределяется равномерно между всеми абонентами, то в коттеджных участках его часто не хватает. То есть, если ваш дом расположен в отдалении от станции, будут введены ограничения по заявленной мощности.

Хорошей альтернативой центральной энергосети станут солнечные электростанции которые можно собрать своими руками. Сегодня такие батареи активно используются и в частных жилых домах, и в целых массивах.

Для чего нужны электростанции.

Современная солнечная станция предназначена для электроснабжения приборов, которые работают при частоте 50 Гц и напряжении 220 В. Она также может питать приборы, работающие с малым напряжением 1,5-2 В.

Солнечные установки способны запитать такие устройства:

  1. Системы противопожарной защиты.
  2. Сигнализации.
  3. Ноутбуки, телевизоры и бытовую технику.
  4. Мобильные телефоны, планшеты и любую электронику.
  5. Радиостанции.
  6. Насосы или другие приборы.

Но, наличие мощной электростанции на солнечных батареях вполне может заменить общую энергосистему дома.

Принцип действия СЭС.

Принцип работы сводится к тому, что солнечные электростанции способны преобразовывать энергию солнца в электрическую. Луч воздействует на частицы кремния, которые являются основой состава батарей. То есть, действие таких электростанций России сводится к явлению внутреннего фотоэффекта. В полупроводниках, под действием солнечного света, образуются «дырки» и электроны, которые начинают хаотично двигаться. Это и есть переменный ток.

Обычно, дома устанавливается мини-солнечная электростанция, которая представляют собой зеркала и отражатели лучей. Современные, готовые солнечные электростанции преобразуют лучи в переменный ток при помощи особых фотоэлементов и фотоэлектрических процессов. Все такие батареи работают при помощи системы слежения. Система «ловит» свет и направляет его на фотоэлемент.

Есть модели разной мощности, произведенная в России электростанция на солнечных батареях слабомощная, ее максимальная мощность составляет 33 Вт. В качестве фотоэлементов такие мини-солнечные электростанции используют поглощающие пластины.

Устройство СЭС.

Независимо от типа устройства, а также от того, какую мощность генерирует солнечная тепловая электростанция, она состоит из таких элементов:

  1. Панель. Может быть одна, если автономная солнечная электростанция обладает малой мощностью, или же их может быть несколько, тогда мощность выработки тока будет значительно выше.
  2. Инверторы – главная составляющая, ими оснащена любая переносная солнечная электростанция. Этот элемент необходим для преобразования постоянного тока в переменный.
  3. Аккумуляторы. Они хранят скопившуюся альтернативную энергию.

Часто для дома устанавливается мобильная солнечная электростанция самого простого типа, с максимальной мощностью 2 кВт. Но производители в России предлагают и другие солнечные электростанции для дома, с мощностью 10 кВт и более. Такие станции могут служить основным источником электроэнергии, или же резервным.

Виды СЭС.

Проектирование солнечных электростанций осуществляется ведущими производителями энергетической сферы России. Создание мощной СЭС требует много знаний и умений, сложного расчета, но такие станции способны обеспечить электроэнергией не только дом, но и целый поселок.

Существуют такие виды СЭС:

  1. Башенного типа – высокая башня, наверху которой расположен резервуар с водой.
  2. Модульного типа, состоит из нескольких модулей, ее следует располагать на возвышенностях.
  3. С конденсаторами. Используются там, где энергии лучей мало и требуется увеличение КПД.
  4. Космического типа.
  5. Комбинированного типа.
  6. С солнечными батареями – наиболее распространенный вид.

Здесь наибольший показатель мощности, который достигает 856 МВт, тип СЭС – солнечные панели. Пока что РФ далеко до такого уровня развития альтернативной энергетики, солнечные электростанции России не способны генерировать высокую мощность.

Солнечная электростанция своими руками – как сделать?

Чтобы обеспечить свой дом стабильной энергией, можно установить небольшую СЭС прямо на участке. Сделать своими руками можно станцию с солнечными батареями. Такая портативная солнечная электростанция может быть использована для загородного дома, небольшого промышленного предприятия, а также для питания отдельных машин и механизмов. Иногда такая система состоит из нескольких модулей, но для питания определенного механизма, будет достаточно одного.

Для создания домашней СЭС потребуется ряд фотоэлементов разной мощности, которые можно монтировать на крышу дома. Расчет солнечной электростанции можно провести самостоятельно, учитывая общее число затраченной энергии в доме или на предприятии и мощность выбранных пластин.

Фотоэлементы для коттеджа нужно устанавливать по особой методике:

  1. Батарейные блоки ставят под прямым углом от падения солнечных лучей. Это позволит увеличить производительность пластины.
  2. Если батареи будут использоваться постоянно, нужно также выставить угол +15 градусов от широты.
  3. Если использование планируется только летом – выставляют угол -15 градусов от широты.
  4. Максимальное искажение угла также не может превысить 15 градусов.

При установке потребуется комплект модулей (для дома лучше выбирать с мощностью 10 кВт), схема установки, комплект креплений, три комплекта коннекторов и сетевой инвертор. Также необходимы наборы кабелей и заземление.

Расчеты показывают, что учитывая подорожание электроэнергии, срок окупаемости такой установки составляет 5-7 лет.

Солнечная электростанция для дома

Установить на крыше солнечные фотоэлементы, которые за день зарядят аккумуляторы, а вечером пользоваться дармовой энергией — это путь к полной независимости от государственного электроснабжения, цен на газ и так далее.

Простейшая схема солнечной станции

Преимуществ у домашней солнечной электростанции предостаточно:

  1. Простота установки и подключения. Не надо строить высокую башню, как для ветровой электростанции, бетонировать фундамент.
  2. Для строительства не нужны большие площади. Многие укладывают светоактивные листы на крышу частного дома.
  3. Простой и нематериалозатратный монтаж сильно сокращает денежные расходы.
  4. Возможно, по мере накопления средств, добавлять к имеющимся панелям новые, увеличивая мощность установки в целом, чего нельзя сделать для ветровой станции.
  5. Отсутствуют вращающиеся части, которые нужно смазывать, подтягивать. Профилактический осмотр солнечных элементов специалисты рекомендуют проводить раз в 1–2 года.
  6. Может эксплуатироваться без капитального ремонта до 25 лет.
  7. Все компоненты электроустановки подвозятся к месту установки в собранном виде.
  8. Солнечные станции бесшумны, безопасны для людей, не мешают птицам. Они самые экологически безопасные среди зелёных технологий.

Перейдем к недостаткам:

  1. Ограничено применение в некоторых регионах количеством солнечных дней.
  2. Имеют низкий КПД и слабую мощность, особенно в хмурые зимние дни, по сравнению с другими источниками энергии.

Подбор PV-элементов

Черные фотоэлектрические панели, photovoltaic PV-элементы, те, которые в диковинку видеть на крышах российских домов, сплошь покрывают любые строения в Японии. А японцы очень практичны и не будут городить то, от чего мало проку. Главная задача — правильно выбрать тип солнечного элемента.

В продаже представлены четыре типа фотоэлектрических элементов:

  1. монокристаллические;
  2. поликристаллические;
  3. аморфные;
  4. тонкоплёночные.
  • Монокристаллические делают из отполированного листа кремния. Примерно 1 кВт энергии от таких изделий можно получить с площади 7 квадратных метров.
  • Поликристаллические кремниевые менее производительные, чем первые. Чтобы получить 1 кВт уже потребуется занять площадь более 8 кв. метров.
  • Аморфные наиболее экономичны при изготовлении: аморфный кремний наносится тонким слоем на подложку и расходуется гораздо меньше. Эти батареи имеют самую низкую мощность и относительно дешевы.
  • Тонкопленочные имеют наибольший КПД в 25 процентов, по сравнению с показателем 12–17 у первых трёх типов. Могут вырабатывать энергию при слабом освещении, даже зимой в облачную погоду. Производят такие пленки на нескольких американских заводах для промышленного использования. Стоят они очень дорого.

Оптимальным вариантом для южной полосы: Одесса – Ростов на Дону – Астрахань – побережье северное Каспийского моря являются монокристаллические элементы. Можно собрать эффективную солнечную установку мощностью до 500 кВт/час за месяц.

Другие компоненты солнечной электростанции

  1. Инвертор, преобразующий постоянный ток в переменный. Фотоэлектрические элементы вырабатывают постоянный ток низкого напряжения, а большинство бытовых приборов работает на переменном высоком напряжении.
  2. Аккумуляторы, сохраняющие энергию для ночного времени.
  3. Контроллер – зарядное устройство, не допускающее перезарядки аккумуляторов и защищающее от утечки обратного тока на PV-элементы ночью.
  4. Автоматическое реле, которое при полной разрядке аккумуляторов переключает питание домашних приборов к общей сети.
  5. Электросчетчик, остается для контроля потребленной энергии.

Цена солнечной установки

Покупать солнечную электростанцию под ключ, к примеру, СЭС-5 удобно тем, что специалисты компании-производителя сами всё привезут, соберут, подключат, проверят и гарантию дадут.

СЭС-5, производитель Термо Технологии, Украина

Стоимость СЭС-5, вместе с монтажом составляет 8250, 9100 долларов. Такая система замечательна тем, что излишки выработанной энергии можно продать в общую сеть по зеленому тарифу. Установка состоит из 25 фотоэлектрических элементов, средней производительностью за месяц – 521 кВт/час. Есть установки равной мощности по цене 15000 долларов. Если в вашем доме все бытовые приборы расходуют за сутки около 10 кВт/час, то этой электростанции вполне достаточно, чтобы всё светилось, крутилось. Кроме отопления, конечно.

Обогрев дома зимой такая электростанция не потянет. Надо увеличить количество солнечных элементов и аккумуляторов как минимум вдвое, соответственно и цена возрастет вдвое.

Если же комплектовать домашнюю электростанцию самостоятельно, то собранная установка обойдется в 8032 доллара. Из расчета, если каждый компонент будет стоить:

  • PV-элементы Yabang Solar YBP 250-60 (250 Вт, 24 В), 20 штук — 4250 долларов;
  • контроллер (зарядное устройство) — 25 долларов;
  • аккумуляторы SIAP PzS 4 APH 420 (2 В, 420 А), 24 шт. — 3624 доллара;
  • инвертор — 69 долларов;
  • автоматическое реле — 33 доллара;
  • электросчетчик — 31 доллар.

Итого: если умудрится самому собрать и подключить солнечную электростанцию для дома, то можно сэкономить лишь 218 долларов.

Автор: Виталий Петрович, Украина Лисичанск.

Ссылка на основную публикацию