Применение алюминия в электротехнике

Медь и алюминий в электротехнике

Без проводников — никуда

Медь (лат. Cuprum) — один из семи металлов, известных с глубокой древности. Значительные запасы медных руд находятся в США, Чили, России (Урал), Казахстане (Джезказган), Канаде, Замбии и Заире.

Медь входит в состав более 150 минералов, промышленное применение нашли 17 из них, в том числе: борнит (Cu5FeS4), халькопирит (медный колчедан — CuFeS2), халькозин (медный блеск — Cu2S), ковеллин (CuS), малахит (Cu2(OH)2[CO3]). Переработка сульфидных руд дает около 80% от всей добываемой меди.

В природе Встречается и самородная медь.

Чистая медь — ковкий и мягкий металл в изломе розоватого цвета, достаточно тяжелый, отличный проводник тепла и электричества, легко подвергается обработке давлением. Именно эти качества позволяют применять изделия из меди в электротехнике — в настоящее время более 70% всей производимой меди идет на выпуск электротехнических изделия. Для изделий с максимальной электропроводностью, используют так называемую «безкислородную» медь. В иных случаях годна и технически чистая медь, содержащая 0,02-0,04% кислорода.

Основные характеристики меди: удельный вес — 8,93 г/cм3, температура плавления — 1083°С, удельное электрическое сопротивление меди при 20°С 0,0167 Ом*мм2/м. Чистая медь обладает высокой электрической проводимостью (на втором месте после серебра). Именно это качество меди используют в промышленности для изготовления электротехнических шин из меди.

Медные шины изготавливаются по ГОСТ 434-78. Состояния в котором поставляются медные шины потребителю: не отожженная (маркировка — Т-твердое), отожженным (М-мягкое) и ТВ-твердые шины, изготовленные из бескислородной меди.

В деформированном состоянии прочность меди выше, чем у отожженного металла, а значения электропроводности понижены.

Сплавы, повышающие прочность и улучшающие другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни — сплавы меди с цинком (меди от 60 до 90% и цинка от 40 до 10%) — прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы . Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

Свинцовые бронзы , содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

Кремниевые бронзы , содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

Бериллиевые бронзы , содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

Кадмиевые бронзы — сплавы меди с небольшим количества кадмия (до1%) — используют при производстве троллейных проводов, для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои — сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное — цинк).

В России медные шины изготавливают нескольких заводов: Каменск-Уральский ОЦМ, Кольчугинский ОЦМ, Кировский ОЦМ.

Мировое производство меди в 2007 году выросло на 2,5% по сравнению с 2006 г. и составило 17,76 млн. тонн. Потребление меди в 2007 году выросло на 4%, при этом медное потребление Китая взлетело на 25% за год, в то время как медное потребление в США резко упало на 20%.

Алюминий и его сплавы

Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.

В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.

Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60% от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.

В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый — среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия — боксит содержит 28-60% глинозема — оксида алюминия Al2O3.

В чистом виде алюминий впервые был получен датским физиком Х. Эрстедом в 1825 году, хотя и является самым распространенным металлом в природе.

Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950°C.

Основные характеристики алюминия: плотность — 2,7×103 кг/м3, удельная теплоемкость алюминия при 20°C — 0,21 кал/град, температура плавления — 658,7°C, температура кипения алюминия — 2000°C, коэффициент линейного расширения алюминия (при температуре около 20°C) : — 22,9 × 106(1/град)

Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) — плав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.

Силумин — легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

Магналии — сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).

По широте применения сплавы алюминия занимают второе место после стали и чугуна.

Несколько интересных фактов про алюминий:

в теле взрослого человека присутствует до 140 мг алюминия,

1 кг алюминия в автомобиле экономит более 10 л бензина на каждые 200 тысяч километров,

алюминий содержится даже в яблоках — до 150 мг/кг,

каждый 20-й из атомов, слагающих верхнюю оболочку нашей планеты — это атом алюминия,

суточная потребность взрослого человека в алюминии оценивается в 2,45 мг.

При более низкой удельной проводимости (около 56% от отожженной меди), алюминиевые проводниковые сплавы имеют то же назначение, что и электротехнический алюминий. Такие сплавы используют для обеспечения требований высокой прочности, ползучести и др. специальных требований. Алюминиевые шины изготавливают по ГОСТ 15176-89 из сплавов АД31 и АД31Т, реже АД0.

Мировое потребление первичного алюминия в 2007 г. составило 37,52 млн. тонн, что на 3,184 млн. тонн (или на 9,3%) больше, чем в 2006 г. Мировое производство первичного алюминия выросло в 2007 г. на 4,024 млн. тонн по сравнению с 2006 г. и достигло 38,02 млн. тонн.

Производители медной продукции

Крупнейший производитель меди на российском рынке — ГМК «Норильский никель»

Второй по величине производитель меди в нашей стране — холдинг УГМК.

Третий крупный игрок российского рынка — «Русская медная компания». В состав ЗАО «Русская медная компания» входят 11 предприятий, действующих в четырех областях России, а также на территории Казахстана

На рынке присутствуют медные шины нескольких заводов: Каменск-Уральского ОЦМ, Кольчугинского ОЦМ, Артемовского ОЦМ, Кировского ОЦМ. Кировский и Кольчугинский ОЦМ входят в состав ОАО «УГМК».

Технологии и цены

Так, как технология изготовления медных шин известна, и на всех заводах практически одинакова, для потребителя на первый план выступает соотношение цена/качество. Отечественные предприятия — лидеры отрасли в настоящее время выпускают качественную продукцию и соревнуются между собой, в основном, по цене. Но, говоря о качестве медных шин, стоит отметить, что примеси даже в очень незначительных количествах существенно снижают электропроводность меди. Поэтому браку здесь не место.

В то же время зарубежными и отечественными предприятиями предлагаются новаторские решения, позволяющие выпускать продукцию с четко заданными параметрами качества. Более того, в особо ответственных моментах изготовление медных шин происходит по собственным, иногда оригинальным, решениям.

Например, ОАО «КУЗОЦМ» выпускает коллекторные полосы из сплава меди с серебром. Такой сплав превосходит медь по эксплуатационным характеристикам, а в отличие от сплава меди с кадмием является экологически чистым. Завод производит и целый ряд электротехнических профилей ответственного назначения. В частности это — медные прямоугольные электротехнические профили, такие, как полутвердые шины, твердые шины с повышенной чистотой поверхности: шины с полным закруглением малых сторон сечения различной твердости и др.

Шины полутвердые выпускаются для удовлетворения требований ВS1432 британских стандартов по качеству поверхности и получения механических свойств, отвечающих полутвердому состоянию. Шины изготавливаются из прессованной заготовки за два прохода волочения с промежуточным отжигом, а чистовое волочение проводится с пониженной степенью деформации по сравнению с традиционной схемой изготовления твердых шин.

Шины с повышенной чистотой поверхности, предназначенные для последующего электролитического покрытия их серебром, обеспечивающего наибольшую электропроводность в месте контакта, и это диктует особые требования к шероховатости их поверхности (Rz≤0,63 мкм по ГОСТ 2789-73). Требуемый заказчиком показатель шероховатости достигнут на КУЗОЦМ целым рядом технологических приемов — применением повышенных суммарных обжатий при волочении, дополнительной подготовкой поверхности протяжки перед чистовым волочением, соответствующей обработкой канала специальной формы составных и монолитных волок. Указанный выше гарантированный уровень шероховатости (Rz≤0,63 мкм) позволяет обеспечить нанесение покрытий заданной, однородной по поверхности шины толщины. Тем самым удается создать контактные поверхности, обладающие малым переходным сопротивлением и высокой электропроводностью.

Читайте также:  Электропроводка – это серьезно

Шины с полным закруглением малых сторон сечения, то есть с радиусом закругления, равным половине толщины шины обладают определенными преимуществами по сравнению с традиционными: повышается износостойкость изоляционного покрытия вследствие отсутствия его изгибов в углах профиля, достигается существенная экономия меди, улучшаются показатели распределения токовой нагрузки по сечению шины.

Через несколько месяцев отношения российских производителей электротехнической продукции и их зарубежных конкурентов должны перейти в новую стадию. Это связано со вступлением в ВТО. С одной стороны, вступление в ВТО открывает перед российскими производителями внешний рынокС другой стороны, вступление в ВТО означает обязательное снижение ввозных экспортных пошлин, которые должны уменьшиться за 3-4 года чуть ли не в полтора раза. И главная конкуренция будет в качестве продукции.

Применение алюминия

Алюминий многогранен: он не только является универсальным
конструктивным материалом, но и отлично проводит электрический ток.
Сегодня именно алюминий, наряду с медью, обеспечивает передачу
электроэнергии на Земле.

Одним из важнейших открытий в истории человечества является электричество. Оно приводит в движение все на нашей планете, позволяет за доли секунды связывать континенты. Без него был бы невозможен современный научно-технический прогресс. Да и производить алюминий мы не могли бы без электричества. Любопытно, что сегодня именно этот металл отвечает за передачу электрической энергии на тысячи километров.

Среди недрагоценных металлов алюминий по электропроводности уступает только меди, и то лишь на треть, при этом алюминий обладает неоспоримым преимуществом – он легче. Чтобы пропускать ток такой же силы, что и медный, алюминиевый провод должен быть по сечению в полтора раза больше медного, но все равно будет иметь вдвое меньший вес. Для высоковольтных линий электропередач, которые осуществляют доставку электроэнергии на большие расстояния, весовые характеристики являются одним из важнейших параметров. Поэтому во всех магистральных воздушных линиях электропередач используются только алюминиевые провода.

4,1х10 7 См/м

5,96х10 7 См/м

6,3х10 7 См/м

Для изготовления алюминиевой проводки используются сплавы серий 1ххх, 6ххх, 8ххх – последние позволяют создавать продукцию со сроком службы более 40 лет.

Заготовкой для алюминиевого кабеля служит алюминиевая катанка – сплошной алюминиевый прут диаметром от 9 до 15 мм. Она легко гнется и сворачивается без появления трещин. Ее практически невозможно порвать или сломать, она легко выдерживает значительные статические нагрузки.

Катанку производят методом непрерывного литья и прокатки. Полученную литую заготовку пропускают через несколько прокатных клетей, уменьшая сечение до нужного диаметра, и формируют гибкий шнур, который затем охлаждается и сворачивается в большие круглые рулоны – «бухты». Далее, уже на кабельных заводах, катанка перерабатывается в проволоку на специальном волочильном оборудовании, волочится до диаметров от 4 мм до 0,23 мм.

Чаще всего используется алюминиевый провод со стальным сердечником (ACSR, aluminium conductor steel reinforced). Он имеет в сердечнике несколько перекрученных стальных нитей, которые «обернуты» слоями алюминиевой проволоки. Сталь используется для увеличения прочности кабеля и позволяет ему сохранять первоначальную форму при нагреве и других нагрузках. Алюминиевая часть отвечает за передачу тока.

Полностью алюминиевый провод из нелегированного алюминия (AAAC, all aluminium alloy conductor) или из алюминиевого сплава легче армированного и в отличие от него абсолютно не подвержен коррозии.

Наконец, провод с композитным сердечником (ACCC, aluminium conductor composite core) позволяет сократить эффект термопровисания провода, характерный для типа ACSR, стальной сердечник которого расширяется при нагреве. Коэффициент расширения углеродного сердечника в 10 раз ниже стального. Кроме того, он существенно легче и прочнее – это позволяет использовать в таком проводе на 28% больше алюминия без увеличения диаметра и общего веса. Дополнительный алюминий сокращает потери энергии в линии на 25-40%.

Применение алюминия и его сплавов в электротехнической промышленности

Алюминий и ряд его сплавов широко применяют в электротехнике благодаря его:

  • высокой электропроводности;
  • коррозионной стойкости;
  • малой плотности;
  • хорошим обрабатываемости давлением;
  • деко­ративному виду;
  • меньшей стоимости по сравнению с более дорогой медью и ее проводниковыми сплавами.

Электротехническая промышленность — крупнейший потреби­тель алюминия. Мировая доля ее потребления составляет 18% от общего количества алюминия. Наиболее широко алюминий используют в кабельной промышленности, на которую в настоящее время приходится около 90 % всего алюминия, потребляемого в электротехнике.

В зависимости от величины удельного электросопротивления алюминиевые электротехнические сплавы подразделяются следующим образом:

  • провод­никовые сплавы;
  • сплавы с повышенным электротехническим сопротивле­нием.

Проводниковые сплавы

Удельная электрическая проводимость электротехнического алюми­ния (А7Е, А5Е)по международному стандартусоставляет 60—62% от проводимости отожженной меди. Технический алюминий (АДО) и электротехнический алюминий (преимущественно А5Е) широко применяют для изготовления проводов, кабелей, шнуров, шин, про­филей и труб различного электротехнического назначения.

Наибольшее применение в электротехнике получили малолеги­рованные сплавы системы Аl—Мg—Si: АД31, АД31Е и их аналоги (АВЕ, 01327, АЕ1/АЕ2). Известны также сплавы на основе алюминия, опробованные в промышленных и полупромыш­ленных условиях. В основном это сплавы систем Аl—Fе—В(Ni), Аl—РЗМ, Аl—Мg(Сu), Аl—Zr, Аl—Si (01017, 01417, 01527, 01117 и др.).

При более низкой удельной проводимости (56—59% от отожжен­ной меди) алюминиевые проводниковые сплавы имеют преимущест­венно то же назначение, что и электротехнический алюминий, и их используют при необходимости обеспечения более высокой проч­ности, теплопрочности, сопротивления ползучести и других спе­циальных требований.

Из сплавов АД31, АД31Е изготавливают шины, профили и трубы, применяемые для различных электротехнических изделий; сплав АД31Е обеспечивает более высокую проводимость, чем сплав АД31 при примерно том же уровне механических свойств. Сплавы более ограниченного применения предназначены для бортовых проводов, кабелей связи, микропроводов интегральных схем и других специальных электротехнических целей. В основном это малолегированные сплавы систем, указанных выше, а также Аl—Мg—Zn, Аl—Сu и др. Все легирующие элементы и примеси, входящие в алюминиевые проводниковые сплавы, по степени снижения электропроводности отожженного алюминия делятся на две группы:

1. Элементы, незначительно снижающие проводимость при содержа­нии 0,1—0,2 % (атомн.): Zn, Ni, Si, Cu, Мо, Са, Fe, Mg, W (у > 35 МСм·м -1 );

2. Элементы, значительно уменьшающие проводимость: Сг, Li, Mn,Ti, Be, Zr (у -1 ).

Микролегирование провод­никовых сплавов поверхностно-активными добавками типа бора спо­собствует понижению удельного электросопротивления алюминиевых сплавов в определенных температурных интервалах и повышению пластичности. Считается, что небольшие по размеру атомы бора (0,09 нм.) образуют нерастворимые бориды хрома, циркония и, вы­водя их из твердого раствора и из сплава, подавляют вредное дейст­вие титана, марганца и ванадия, повышают проводимость изготав­ливаемых из них электротехнических изделий. В последние годы алюминиевые проводниковые сплавы стали более широко применять для воздушных проводов и кабелей связи (в основном, сплавы АД31Е, АВЕ). Высокая прочность прово­дов из алюминиевых сплавов позволяет увеличить размеры пролетов линии электропередач, способствует уменьшению количества повре­ждений при монтаже. По величине сопротивления действию дуги, возникающей при коротком замыкании, провода из алюминиевых сплавов занимают второе место после медных и значительно устойчивее проводов из алюминия. Стоимость алюминиевого провода в линиях электропередач составляет от 1/2 до 1/3 стоимости медного провода равной проводи­мости. На сегодняшний день перечень основных видов применения алюминия и алюминиевых сплавов в электротехнической промышленности очень широк:

  • ¾ сталеалюминиевые провода для напряжений до 750 кВ, предна­значенные для передачи электрической энергии в воздушных электри­ческих линиях и на линиях электрифицированного транспорта;
  • ¾ си­ловые кабели высокого (1—35 кВ) и сверхвысокого напряжения (до 500 кВ) с алюминиевыми жилами и оболочками;
  • ¾ кабели связи все­возможных видов и назначений;
  • ¾ трансформаторы до 70 тыс. кВт;
  • ¾ электрические двигатели до 1000 кВт и более;
  • ¾ электрические приводы;
  • ¾ корпуса электрических батарей;
  • ¾ зарядные станции для электромобилей;
  • ¾ шинопроводы;
  • ¾ провода для работы при повышенных температурах;
  • ¾ биметал­лические алюминиевомедные установочные провода и жилы для контрольных и радиочастотных кабелей;
  • ¾ разнообразная электриче­ская и светотехническая арматура.

Сортамент полуфабрикатов, используемых в этих изделиях электротехнического назначения очень разнообразен:

  • прямоугольная (сечением 1,8÷7,7×4,1¸18мм) и круглая проволока диаметром от 0,08 мм до микронных размеров в волокнистой, эмалиево- волокнистой и пластмассовой изоляции, оксидированная или незащищенная;
  • кабельные оболочки диаметром 10—100 мм неограниченной длины; однопроволочные секторные жилы сечением 50—240 мм 2 , фасонные и прямоугольные шины шириной до 380 мм;
  • листы, фольга, биметаллы; литые детали, преимущест­венно из различных сплавов алюминия.

Кроме специальных проводниковых сплавов, в электро- и свето­технике находят применение мало- и среднелегированные алюминие­вые деформируемые сплавы проводимостью ниже 30—32 МСм·м -1 . Наиболее широко применим сплав АД31, в ряде случаев используют сплавы 1320, 1915, 1925 (1955) и др. Сплав 1320 системы Аl— Мg—Si наиболее близок по свойствам к сплаву АД31, превосходит последний по пределам прочности и текучести, коррозионным свой­ствам, качеству поверхности после прессования, уступая по электро­проводности. Большинство вышеперечисленных сплавов применяют для полу­чения различных прессованных полуфабрикатов электротехниче­ского назначения. Профили из этих сплавов максимально прибли­жены по сечению к определенным деталям электротехнических из­делий. Кроме того, прессованные профили применяют для изготов­ления:

  • корпусов электродвигателей;
  • разных приборов;
  • стоек;
  • ребер жесткости;
  • плат, к которым крепятся детали;
  • радиаторов и охла­дителей полупроводниковых приборов непосредственно или взамен стального и медного проката, алюминиевого и медного литья.

Термическая обработка алюминиевых сплавов, применяемых в электротехнике, позволяет существенно изменять характеристики электропроводности. Так закалку сплавов АД31Е, АД31, 1320 можно осуществлять в ши­роком диапазоне температур: от 490 до 565 °С, предпочтительно при 525 °С в холодную воду. Старение — искусственное по унифициро­ванному режиму: 165 °С, выдержка 12 ч или при 140—180 С С, 12—2 ч в зависимости от требований, предъявляемых к механическим свой­ствам и электропроводности деталей. Термомеханическая обработка позволяет получить проволоку из сплава АД31Е и его аналогов с высокими значениями электропро­водности и прочностных характеристик одновременно. Наиболее распространена низкотемпературная термомеханическая обработка (НТМО) по следующей технологической схеме: закалка бухт ка­танки от 525—565 °С в воду с температурой 20 °С, волочение в про­цессе естественного старения со степенью деформации более 80 %; искусственное старение при 140—180 °С в течение 16—20 ч. Использование ТМО возможно при производстве катанки из алюминиевых сплавов не­прерывным методом. Для этого необходимо проводить волочение про­волоки сразу после прокатки катанки с регулированием скоростей прокатки и охлаждения заготовки. Новая технология получения проволоки и полуфабрикатов из гранул и в виде композиционных материалов позволяет получить материалы, обладающие особыми физико-механическими и другими свойствами, что открывает перспективу создания принципиально новых конструкций и технологических решений в электротехнике. Примером может служить биметаллическая проволока алюминий (алюминиевый сплав) — медь, позволяющая изготавливать провода вдвое более легкие, чем медные, и имеющие проводимость на уровне электротехнической меди. Те же преимущества позволяют получить алюминийуглеродные, алюминиевомедные слоистые ленты, листы, плиты.

Читайте также:  Как проверить свет в новостройке?

В электротехнике есть три сектора где медь и алюминий конкурируют между собой:

  • ¾ кабели низкого и среднего напряжения;
  • ¾ трансформаторы;
  • ¾ шины электропитания.

Для кабельной продукции необходимо решить, что важнее поперечное сечение кабеля или больший вес? Алюминиевый кабель будет более дешев, чем медный, однако, медный более технологичен для различных конструктивных решений и менее проблематичен при применении в контактных соединениях. В последнее время появились медно-алюминиевые кабели, что позволило примирить конкурентов по электропроводимости: медь и алюминий.

Применение алюминия в трансформаторах вместо меди позволяет существенно экономить его вес. Различие в производственных затратах медных и алюминиевых трансформаторов компенсируют друг друга и по мнению изготовителей, выбор материала- прежде всего вопрос идеологии компании.

Требования к шинам электропитания диктуются, в первую очередь, габаритными размерами соответствующих конструкций. Большое количество токопроводящего материала и небольшое количество изоляционного материала в малом пространстве– вот что такое шины электропитания. Поэтому на первый план выдвигается ценовое различие. Большое количество электрических соединений в пределах небольшого пространства означает возможные проблемы соединений с алюминием. А когда все конструктивные решения учтены, вопрос выбора материала становится почти философским. Если в качестве критерия выбрана цена, то предпочтителен алюминий. С целью улучшить электропроводимость наалюминиевые контакты можно различным способом нанести медь. Алюминиевые и медные проводники, как правило, покрывают металлом с серебром или оловом. В цехах химического производства, на месторождениях нефти и газа, нефтегазоперерабатывающих заводах, сталелитейных заводах могут присутствовать коррозионно-активные газы, такие как сероводород. Алюминий стоек в сероводородных средах, а для медных контактов необходима оловянная металлизация.

(По материалам отечественной и зарубежной печати)

Применение алюминия в электротехнике

Алюминий широко используется в электротехнической промышленности. Проводимость алюминия меньше чем у меди, однако стоимость его меньше. Легкость обработки, малый вес, стойкость к коррозии- эти и другие качества являются его приоритетными.

Многие конструкторы и проектировщики на предприятиях электротехнической отрасли привыкли работать с медью и сталью, считая их наиболее пригодными для работы материалами. Однако в последнее время стоимость алюминия растет не так быстро, как стоимость стали и меди. По этому и по некоторым другим причинам, о которых мы напишем в этой статье, многие производители переходят на алюминий. Если сравнить физические характеристики и экономические показатели этих материалов, то очевидно, что вскоре алюминий потеснит на рынке электротехники другие металлы.

Для конструктора электротехники приоритетными качествами используемых материалов являются их плотность, электропроводимость, прочность, термическое расширение и коррозионная стойкость.

Электрические характеристики

Отожженная медь обладает проводимостью 100 % IACS. ( IACS – сравнительная ед. изм. электрической проводимости). Сплав алюминия АД0 обладает проводимостью 61 % IACS, это значит, что аналогичная меди проводимость будет обеспечиваться при большем объеме и площади сечения алюминия. Учитывая что алюминий весит значительно меньше меди, проводник из алюминия большего размера будет в 3 раза легче медного. Это значит что 1 кг алюминия по проводимости равнозначен 3 кг меди. Можно сделать вывод, что если нет особенных требований к габаритам проводника, для электротехнических шин, кабелей и проводки вместо меди можно использовать алюминий. Следует так же учесть, что медь довольно дорогостоящий материал, ее стоимость примерно в 3 раза выше стоимости алюминия. Нередки случаи хищения дорогостоящих цветных металлов, потому медные изделия нуждаются еще и в дополнительной охране либо защите от взломов.

Прочность

Медь и сталь превосходят алюминий по прочности, но алюминий можно упрочнить легированием и термомеханической обработкой. Так же у алюминиевых сплавов есть еще одно преимущество- благодаря технологии прессования, можно получить изделия практически любой формы, что не возможно для стальных заготовок. Вот почему конструкционно алюминиевые изделия могут быть более результативными, чем металлические элементы. Сталь используют только в тех случаях, когда механическая прочность играет наиболее важную роль – например, рельсы ж/д или травмаев.

Коррозионная стойкость

Поверхность изделий из алюминия не нуждается в покраске или покрытии другими металлами, что выгодно отличает его от стали. В электротехнике применяются алюминиевые сплавы технической чистоты, содержащие минимальное количество примесей. Это сплавы АД0, АД31, АД35 и их европейские аналоги (6060 и 6082). Эти сплавы между собой схожи по характеристикам, отличаются прочностью. Наиболее прочный из них АД35, АД0 более пластичный, но менее прочный.

Естественный слой оксида алюминия предохраняет материал от взаимодействия с воздухом и окисления. Этот слой сам регенерируется при любых повреждениях поверхности. Сталь конечно же не обладает таким свойством, сталь подвержена коррозии и без окрашивания достаточно недолговечна.

Алюминиевые профили

Уличные и шоссейные столбы – столбы из прессованного алюминия превосходят металлические столбы по многим критериям: меньший вес, меньшее соотношение прочность -вес, внешний вид, стойкость к коррозии, безопасность. Так же маленький вес облегчает монтажные работы и сокращает расходы по транспортировке. Так же алюминиевые сплавы, используемые в электротехнике, отлично свариваются и режутся.

Электротехнические шины – для всех видов шин используют прессованный алюминий, если достаточно места для их размещения, поскольку стоимость их значительно меньше, и они более пластичны. Электротехнические шины изготавливают не из всех алюминиевых сплавов, для них применяют сплавы АД0, АД31 и АД35. Чаще всего электротехнические шины изготавливают из сплава 6060 Т6 или АД31Т.

Кабельные наконечники и гильзы и кабель -каналы изготавливают из прессованных алюминиевых труб. По сравнению с изделиями из черного металла или пластика, они выгодно отличаются по прочности, проводимости, стоимости, стойкости к коррозии и легкости механической обработки.

Шкафы электрических подстанций. Использование профилей из алюминия выгоднее, чем оцинкованных профилей, за счет минимального техобслуживания, прочности, коррозионной стойкости, незначительного веса (что важно при высотных работах и монтаже). Профили и листы из алюминия легко резать и сверлить прямо на месте монтажа и не нужно красить.

По тем же причинам из алюминия часто изготавливают распределительные траверсы электрических столбов, например, как на фото:

Прессованные алюминиевые пластинчатые радиаторы для рассеивания тепла («гребенки») показывают прекрасные результаты за счет отличной теплопроводности, небольшого веса, низкой сцены. Технология прессовки алюминия позволяет получить довольно тонкие пластины- ребра.

Алюминий в электротехнике

Алюминий для электротехнической промышленности

Так сложилось много лет назад, что большинство инженеров, конструкторов и проектировщиков в электротехнической промышленности считают медь и сталь практически единственными материалами, с которыми можно работать. Это связывают, в частности, с тем, что в конце 19-го века, когда зарождалась электрическая промышленность, доступного алюминия практически еще не было.

В настоящее время ситуация совершено другая: алюминия в мире производят где-то в два раза больше чем меди и объемы производства алюминия уступают только объемам производства стали.

В последние годы цены на сталь и медь растут значительно быстрее, чем цены на алюминий. В результате некоторые потребители, которые традиционно применяли медь, переходят на алюминий. Однако сравнение физических и экономических характеристик этих металлов «кричит» о том, что замен стали и меди на алюминий должно быть намного больше. Поэтому не удивительно, что применение алюминия в электротехнической отрасли неуклонно возрастает.

Свойства материала как электрического проводника

Для инженера-электрика наиболее важными свойствами и характеристиками материалов являются:

  • плотность,
  • электрическая проводимость,
  • прочность,
  • термическое расширение и
  • коррозионная стойкость.

Сравнение алюминия, стали и меди

Плотность (г/см 3 ):
Алюминий 1350: 2,70
Сталь: 7,86
Медь (отожженная): 8,93

Объемная проводимость (% IACS):
Алюминий 1350: 61
Сталь: 8
Медь (отожженная): 100

Удельная проводимость (на единицу массы):
Алюминий 1350: 100 %
Сталь: 4 %
Медь (отожженная): 50 %

Предел прочности (МПа):
Алюминий 1350: 125
Сталь: 300
Медь (отожженная): 235

Предел текучести (МПа):
Алюминий 1350: 110
Сталь: 170
Медь (отожженная): 104

Линейное термическое расширение (10 -6 м/м·°С):
Алюминий 1350: 22
Сталь: 13
Медь (отожженная): 17

Электрические свойства

Отожженная медь имеет проводимость 100 % IACS. Сокращение IACS – обозначает «Международный стандарт по отожженной меди» – сравнительная единица измерения электрической проводимости. Алюминий 1350-Н116 (АД0Е по ГОСТ 4784-97) имеет проводимость 61 % IACS, то есть эквивалентная меди проводимость будет достигаться при большем поперечном сечении алюминия. Однако поскольку алюминий намного легче меди этот увеличенный алюминиевый проводник будет весить в два раза меньше чем медный (8,93/2,70×0,61=2,02). В результате один килограмм алюминия будет обеспечивать ту же проводимость что и два килограмма меди. Поэтому, когда нет жестких ограничений по размерам проводника, для токопроводящих шин, кабелей и проводов вместо меди все чаще применяют алюминий.

Прочность

При одинаковых сечениях и медь, и сталь, конечно, прочнее алюминия. Однако прочность алюминия можно увеличить легированием и термомеханической обработкой, а также увеличить его толщину. Кроме того, поскольку технология прессования алюминия позволяет получать в отличие, например, от стали, поперечные сечения очень сложной формы. Поэтому алюминиевый элемент может быть сконструирован таким образом, чтобы конструкционно быть более эффективным, чем стальные элементы.

Читайте также:  Как найти замыкание в проводке?

Сопротивление коррозии

В отличие от стали поверхность алюминия не нужно красить или покрывать, например, цинком, а потом следить, чтобы она не заржавела. Естественный слой оксида алюминия изолирует металл от дальнейшего контакта с воздухом и предотвращает дальнейшее окисление. При малейшем повреждении этого слоя он мгновенно сам восстанавливается.

Заблуждения и мифы

Алюминиевые проводники являются достаточно надежными. Все провода линий электропередач – алюминиевые. Они имеют многолетнюю репутацию надежной службы.

Однако еще в 60-70-е годы прошлого века сложилось мнение о проблемах с алюминиевой проводкой в жилых домах и квартирах, в частности, возможном перегреве их соединений. Тщательные исследования этого вопроса, например, в Канаде, показали, что алюминиевые провода не являются в этом смысле какими-то особенными: при неправильном обращении перегреваться могут любые провода. Более того, в сотнях тысяч домов и квартир по всему миру алюминиевые провода продолжают работать. Другое дело, в 60-70-е годы никто не предполагал, что дома и квартиры будут так «напичканы» электрическим приборами: сечения алюминиевых проводов можно было заложить и потолще.

Алюминиевые профили в электротехнике

Уличные и шоссейные осветительные столбы

Алюминиевые прессованные столбы имеют преимущества перед, например, стальными столбами, за счет их меньшего веса, меньшего соотношения прочность-вес, хорошего внешнего вида, долговременной коррозионной стойкости, низкой стоимости обслуживания, а также большей безопасности, особенно при применении специальных безопасных оснований. Когда на такой столб наезжает на большой скорости автомобиль, это основание разрушается и позволяет столбу двигаться вместе с автомобилем. Это снижает мощность удара по автомобилю и степень повреждений водителя и пассажиров. Это основание так «хитро» спроектировано, что оно разрушается от удара об столб, но выдерживает воздействующие на столб ветровые нагрузки.

Токопроводящие шины

Для всех типов шин применяют прессованный алюминий там, где это позволяет место для их размещения, так как они, в первую очередь, намного дешевле, а также их намного легче гнуть (рисунок 1).
Рисунок 1

Кабельные наконечники и гильзы

Кабельные наконечники и гильзы из прессованных алюминиевых труб имеют преимущества над аналогами из стали или пластика по прочности, проводимости, стоимости, коррозионной стойкости и легкости механической обработки (рисунок 2).
Рисунок 2

Каналы для прокладки кабелей

Каналы для прокладки кабелей все чаще применяют из прессованного алюминия, а не из стали или пластика, так как они обеспечивают достаточную прочность, имеют малый вес, обладают высокой коррозионной стойкостью, являются немагнитными и огнестойкими (рисунок 3).
Рисунок 3

Шкафы электрических подстанций

Алюминиевые профили предпочтительнее, например, оцинкованной стали, за счет минимального технического обслуживания, прочности, коррозионной стойкости, малого веса (особенно при монтаже в полевых условиях и на высоте). Алюминиевые профили и листы легко подрезать и сверлить прямо «по месту», а главное, их не надо красить для защиты от коррозии.

Распределительные траверсы электрических столбов

Распределительные траверсы электрических столбов (те, которые горизонтальные) из прессованного алюминия обеспечивают необходимую прочность, но при этом мало весят и не требуют никакого технического обслуживания.

Радиаторы-гребенки

Прессованные алюминиевые пластинчатые радиаторы для рассеивания тепла («гребенки») весьма эффективны за счет высокой теплопроводности, малого веса, низкой стоимости. Главное преимущество алюминия – способность прессоваться во много очень тонких ребер (рисунок 4).
Рисунок 4

Коаксильный кабель

Наружный проводник коаксильного телевизионного кабеля чаще всего выполняют не из медной трубы, а из более дешевой алюминиевой. Технология изготовления такого кабеля представлена на рисунке 5.

Рисунок 5

Алюминиевые сплавы, в электротехнике, с электрическим сопротивлением

В электротехнических изделиях часто используются алюминиевые сплавы, обладающие повышенным удельным электрическим сопротивлением. Так, короткозамкнутые роторы (беличьи клетки асинхронных двигателей) обычно заливают алюминием, имеющим в литом виде удельное электрическое сопротивление около 0,03 омх Хмм 2 /м.

Литейные сплавы на основе алюминия имеют удельное электрическое сопротивление не выше 0,06— 0,085 ом мм 2 /м и поэтому не всегда пригодны для рассматриваемых целей.

Известны алюминиево-марганцовистые сплавы, в которых марганец, входя в твердый раствор алюминия, очень резко повышает удельное электрическое сопротивление.

На рис. 5-1 показано, что при добавке 9% марганца в алюминий удельное электрическое сопротивление равно 0,2 ом-мм2/м; зависимость электрического сопротивления от концентрации марганца в алюминии близка к прямолинейной. По данным рис. 5-1 можно рассчитать состав сплава для получения нужной величины удельного электрического сопротивления.

Продолжительные нагревы до 200° С не оказывают влияния на удельное электрическое сопротивление сплавов и это обеспечивает стабильность электрических свойств обмотки ротора.

Алюминисво – марганцовистые сплавы следует выплавлять из чистых металлов, ибо наличие таких примесей, как железо или медь, понижает удельное электрическое сопротивление, а примеси железа придают сплавам чрезвычайно большую хрупкость.

Опыт отечественных заводов по использованию алюминиево-марганцстистых сплавов для заливки роторов показал, что сплавы алюминия с 3—10% марганца, а также многокомпонентные высоколегированные сплавы имеют удельное электрическое сопротивление на нужном уровне, но обладают повышенной хрупкостью. Последнее обстоятельство в значительной степени затрудняет промышленное использование рассматриваемых сплавов.

В асинхронных двигателях общего назначения обмотки роторов выполняются, чистым алюминием. При проектировании обмоток роторов двигателей проводимость алюминия принимается равной 32 м/ом-мм2 и при этом возможны отклонения не больше ±8%. Такие значения проводимости имеет алюминий марки А5 по ГОСТ 11069-64. Однако в процессе расплавления алюминия и заливки им роторов происходит обогащение его железом, не металлическими включениями и насыщение газами, в результате чего проводимость алюминия значительно уменьшается и в ряде случаев может быть ниже установленного предела.

Для заливки роторов специальных двигателей (с повышенным скольжением, повышенным моментом и т. п.) требуются сплавы с более низкой, чем у алюминия проводимостью. Так, в практике некоторых заводов используются литейные сплавы с проводимостью 25 и 15 м/ом-мм2, не имеющие строго определенного химического состава.

Отечественные электромеханические заводы предъявляют следующие основные технические требования к алюминиевым сплавам для заливки роторов асинхронных электродвигателей: 1) высокие технологические свойства (при заполнении пазов ротора не должно быть горячих трещин и концентрированных усадочных раковин и т. п.); 2) технология приготовления сплавов должна быть проста и доступна для выполнения; 3) сплавы должны иметь проводимость, равную 32, 25, 19, 15, 12 и 8 м/ом-мм2, при этом отклонение от заданных норм должно быть не более ±8% в готовых обмотках роторов; 4) сплавы должны быть без дефицитных компонентов.

В табл. 5-1 приведены химические составы алюминия и алюминиевых сплавов, предназначенных для заливки роторов асинхронных электродвигателей с 1-го по 9-й габариты.

Заливка роторов двигателей общего назначения обычно производится алюминием. Проводимость алюминия в залитом роторе должна быть 32 м/ом мм 2 ±8%. Такую проводимость имеет алюминий при наличии следующих примесей: железа не более 0,5%; кремния не более 0,3%; общая сумма их должна быть не более 0,7%.

Шихтовыми материалами должны быть чушковый первичный алюминий и возвраты собственного производства. Состав шихты подбирается так, чтобы во всех случаях в залитом роторе содержание примесей в алюминии не превышало указанных пределов. Это даст возможность заводам широко использовать свои сырьевые ресурсы. Загрязнение алюминия окислами, газами и другими включениями может значительно ухудшить его электрические свойства, поэтому рафинирование алюминия как средство его очистки от неметаллических включений должно быть обязательным.

Наиболее простым и достаточно эффективным способом рафинирования является обработка жидкого алюминия обезвоженным хлористым цинком. Хлористый цинк берется в количестве 0,05—0,03% массы металла и вводится в глубь металла с помощью специального колокольчика. Хлористый цинк при погружении в металл переходит в парообразное состояние и затем в виде газовых пузырей выделяется из металла, оказывая на него рафинирующее действие. Процесс рафинирования длится 2—3 мин и заканчивается после прекращения выделения пузырей из металла. Затем с поверхности жидкого металла удаляются окислы.

Рафинирование жидкого металла не следует производить многократно, так как это может привести к увеличению хрупкости металла в горячем состоянии и к образованию трещин на отливках.

Для заливки роторов электродвигателей специального назначения (с повышенным скольжением, повышенным моментом и т. п.) должны применяться алюминиевые сплавы. В табл. 5-1 приведены составы этих сплавов и их проводимость. Как следует из табл. 5-1, каждому из значений проводимости удовлетворяют два сплава различного химического состава и различные по литейно-технологическим свойствам.

Указанное обстоятельство позволяет лучше использовать возможности Производства, а также учитывать конструктивные особенности роторов и методы их заливки.

Так, для роторов с узкими пазами рекомендуется применять сплавы с повышенной жидкотекучестью. Для роторов с широкими пазами и особенно с толстыми кольцами следует применять сплавы, не дающие концентрированной усадки.

В этом случае, если для роторов с толстыми литыми кольцами окажется вынужденным применение сплава, имеющего концентрированную усадку, конструкция ротора и литейной формы должна обеспечивать возможность хорошего заполнения колец в процессе литья.

Для уменьшения влияния на проводимость неметаллических включений и газонасыщенности сплавы после приготовления следует рафинировать. Номинальное значение проводимости соответствует среднему химическому составу сплавов в литом состоянии.

В табл. 5-2 приведены электрические свойства алюминия и сплавов в литом состоянии.

Данными, приведенными в табл. 5-й, следует пользоваться при расчете сопротивления обмотки ротора в работающем двигателе. Указанные в таблице температуры охватывают возможные режимы работы двигателей.

В табл. 5-3 представлены физико-механические свойства алюминия и алюминиевых сплавов в литом состоянии.

В табл. 5-4 даны качественные характеристики алюминия и сплавов для заливки роторов по литейно-технологическим свойствам, а также приведены наиболее приемлемые методы заливки.

Ссылка на основную публикацию