Виды теплообменников

Теплообменные аппараты

Теплообменный аппарат или теплообменник – это техническое устройство, в котором физический принцип передачи тепла от теплой среды к холодной без применения внешней энергии, превращен в технологический процесс. Он не является самостоятельным прибором и применяется в комплексе с другим тепловым оборудованием, поэтому должен соответствовать ему по параметрам.

Современные модели теплообменников характеризуются высоким уровнем безопасности, производительностью, минимальными потерями тепловой энергии в рабочем процессе, сниженными затратами теплоносителя и его циркуляции. Эти аппараты изготавливаются из новейших материалов, которые стойки к разрушительному коррозийному воздействию, что значительно увеличивает их ресурс. Чтобы понять работу этих устройств, рассмотрим теплообменный процесс.

Понятие теплообмена

Теплообмен представляет собой необратимый физический процесс, когда тепло передается от горячих тел или сред к холодным. На этом физическом законе базируется функционал теплообменного аппарата. Процесс происходит естественно, без совершения какой-либо работы над телом или средой. Он заканчивается, когда разницы температуры выравниваются. Теплообмен осуществляется 3-мя способами:

  • За счет теплопроводности. В этом случае теплота переходит от одного тела к другому при контакте. Материалы, в частности нержавеющие стали, характеризуются разной способностью проводить тепло. Большими показателями характеризуется металлы, кроме свинца и ртути. Тепловой обмен осуществляется во взаимодействии молекул одного вещества с другим. Интенсивность теплообмена измеряется коэффициентом теплопроводности k, который лежит в диапазоне от k = 600…2000 (Вт/м 2 K) для вязких сред (например, сахарный сироп) до k = 2000…7000 (Вт/м 2 K) для воды.
  • Излучением. Это электромагнитные волны, которые испускает вещество при нагревании до конкретных температурных значений. Эту энергию испускают любые тела, в том числе и биологические организмы. Чем выше температурные показатели у вещества, тем большие параметры у излучения. Эта энергия частично улавливается другими телами и частично отбрасывается. Темные предметы интенсивней поглощают тепловое излучение, светлые – больше отражают. Теплообмен излучением играет малозаметную роль и в программах по расчету теплообменников, как правило, не учитывается.
  • Конвекция – это тип теплообмена, при котором выполняются обменные процессы тепловой энергии в потоках газообразных веществ и жидкостей. В твердых веществах конвекция не происходит. Конвекция бывает двух видов: естественная и вынужденная. Первая возникает при неоднородном разогреве. Вынужденный процесс происходит, когда газ или жидкость принудительно перемешиваются. На вынужденном принципе базируется работа теплообменных аппаратов.

Определение и классификация

Теплообменные аппараты – это технологические устройства, которые выполняют передачу тепла межу двумя средами. Установки различаются по принципу действия на два типа:

  • Рекуператоры. В этих устройствах теплоносители отделены друг от друга стенкой. К ним относится большинство современных, в том числе теплообменники для горячего водоснабжения.
  • Регенераторы. В этих аппаратах среды, между которыми происходит теплообмен, поочередно касаются одной и той же поверхности. По регенеративному принципу тепло накапливается в твердом веществе во время контакта с горячим носителем и отдается холодному.

Теплообменник работает и на нагрев, и на охлаждение. Этот фактор расширяет сферы применения установок. Теплообменные устройства применяются:

  • в коммунальном хозяйстве;
  • на нефтеперерабатывающих, нефтяных, химических предприятиях;
  • в энергетической отрасли;
  • на пищевых и фармацевтических комбинатах;
  • в газовой промышленности.

Конкретная модель выбирается в зависимости от условий предстоящей эксплуатации. Разработаны такие аппараты, которые помимо теплообмена выполняют смежные функции. Теплообменные установки, действующие на рекуперативном принципе, подразделяются на виды по направлению движения среды:

  1. прямоточные;
  2. параллельное движение по одну маршруту;
  3. противоточные (наиболее часто встречаются в пластинчатых теплообменниках);
  4. противоточные, при встречном параллельном движении.

Устройство, принцип работы простейшего теплообменника

Теплообменные аппараты различаются устройством, но работают на одном принципе. Чтобы понять его, рассмотрим конструкцию простейшей установки. Элементарный прибор – это емкость с кожухом, охлаждающим и нагревающим. Рубашка окружает емкость и создает кольцевое пространство, в которое подается жидкость или пар (теплоноситель). Если в кольцевое пространство залить холодную воду, то среда в основной емкости охлаждается. Если рубашка будет наполнена теплоносителем, вещество в основном резервуаре будет нагреваться.

Схемы подключения

Теплообменный технический аппарат подключается к системе тремя способами:

  1. Независимая конфигурация.
  2. Параллельная конфигурация (или 1-ступенчатая) предполагает монтаж оборудования соответственно названию между двумя коммуникациями. Регулировка выполняется 1-им клапаном.
    Смысл процесса – это постоянное фиксирование заданной температуры. Это простая структура, обеспечивающая хороший теплообмен, но потребляет большие объемы теплоносителя.
  3. Двухступенчатая конфигурация рационально использует тепловую энергию обратного потока. Подготовка жидкости выполняется в группе из 2-х агрегатов.
    Такой теплообменник называется моноблок, то есть 2 пластинчатых теплообменника, изготовленные на одной раме. Первая ступень теплообмена нагревает воду обратным потоком воды из системы отопления примерно до +40 градусов. Вторая ступень теплообмена продолжает процедуру и доводит показатели температуры воды до +60 градусов, что соответствует общепринятому нормативу по температуре ГВС. В этом случае между теплообменными аппаратами может быть установлено любой тип соединения. Этот способ характеризуется низким расходом теплоносителя – до 40% за счет использования оставшегося неиспользованным тепла обратного потока системы отопления, и, соответственно, высоким КПД.

Грамотный выбор схемы подключения гарантирует экономичность эксплуатации. Для этого нужно правильно увязать гидравлические режимы горячего водоснабжения и отопления.

Технические характеристики и преимущества теплообменников

Любой теплообменный охладительный или нагревательный аппарат устроен по принципу обмена теплом между средами, но конструкции – различны. Устройства создаются в широком ассортименте. Чтобы правильно сделать выбор, нужно знать:

  • виды устройств;
  • их конструкции;
  • технические и эксплуатационные параметры;
  • назначение.

В различных сферах жизнедеятельности человека наиболее востребованы аппараты рекуперативного типа, они классифицируются по следующим видам:

  • миниканальные;
  • смесительные;
  • погружные;
  • паяные;
  • поверхностные;
  • оросительные;
  • пластинчатые;
  • ребристые;
  • кожухотрубные и прочие.

Пластинчатые аппараты высоко популярны, в сравнении с другими конструкциями. Они производительны, безопасны, надежны и относительно дешевы в изготовлении и эксплуатации. Это проточные установки. Они представляют собой пластины, собранные в пакет пластин, между которыми формируются нагревающий и нагреваемый каналы. Пакет пластин устанавливается в раму с рабочим давлением 10, 16 или 25 бар.

Потоки разделены стенками, поэтому перемешивание сред исключается. От качества прокладочного материала, числа пластин в пакете, размеров и формы зависят условия, в которых будет эксплуатироваться устройство. Базовые эксплуатационные параметры теплообменников:

  • габариты установки;
  • диапазон температур;
  • вид исполнения;
  • материалы, из которых выполняются базовые элементы;
  • номинальное давление;
  • расходы теплоносителя.

Правильный выбор – это первый критерий надежной работы систем. Как и всякая техника, нуждаются в техническом обслуживании, замене расходных материалов, текущем ремонте. Особенностью ухода за теплообменным оборудованием является промывка внутренних стенок пластин. Поскольку внутри конструкции циркулируют горячие среды, при температуре выше +40 градусов образуются посторонние вещества: накипь, ржавчина, а также возможно образование химических соединений. Они осаждаются на стенках и мешают передаче тепла, то есть снижают коэффициенты теплопередачи.

Для сохранения работоспособности оборудования на протяжении всего срока эксплуатации, необходима регулярная промывка системы отопления, охлаждения и подачи горячей воды. Разработаны и используются несколько технологий очистки, но лучшие результаты показывает химический метод (безразборным или разборным способами). Промывку выполняют либо согласно графику регламента, либо при появлении признаков засора.

Выводы

Теплообменный аппарат – это надежная, производительная и безопасная установка. Еще недавно считали импортное оборудование более безопасным и долговечным, но теперь пластинчатые теплообменники российского производства ничем не уступают аналогам зарубежного производства, но реализуются по разумным ценам.

Наша компания реализует теплообменные установки любого типа и производства. Поставки выполняются в любой регион России. Продукция сертифицирована, соответствует техническим нормативам РФ и сопровождается гарантиями. Наши менеджеры с помощью инженерных расчетов помогут вам грамотно подобрать модель для конкретных условий эксплуатации.

Виды теплообменников, их устройство и принцип работы

Главной целью теплообменника является передача тепла от носителя (вещества с высоким показателем температуры) до холодного объекта. Примером теплоносителя может являться газ, жидкость и пар. Сегодня на прилавках магазинах можно наблюдать большое разнообразие теплообменников. Каждый из них имеет свои особенности: принцип действия, внешний вид, разные показатели температуры и т. д. Кожухотрубные теплообменники, принцип работы которых отличается от пластинчатых приборов, имеют совершенно иные параметры, чем аналог, но другого вида. Для того чтобы сделать правильный выбор, необходимо изучить подробности агрегатов и понять их характеристики.

Принцип работы теплообменника

Современный теплообменник может работать по трём основным процессам:

  • конвекция;
  • тепловое излучение;
  • теплопроводность.

Классификация приборов происходит по тому, каким из способов тепло поставляется к холодному объекту, а именно:

  • смесительный способ;
  • теплообменный способ.

В их принципе работы, устройстве и виде заключается основная разница. Именно потому важно, прежде чем совершить покупку теплообменника, изучить все имеющиеся виды в продаже. Лучшим вариантом описания принципа действия изделия является пример с поверхностными агрегатами. Они считаются одними из самых распространённых конструкций среди пользователей. Внутри этого прибора сосредоточены чувствительные элементы, которые нагреваются, передавая тепло холодному объекту.

Если взять смесительный агрегат, то он совмещает в себе взаимодействие воздуха и жидкости, выдавая в итоговом результате высокий уровень коэффициента полезного действия. Тем самым — это устройство становится лёгким по изготовлению, с высокой скоростью получения нужного результата. Только при смешивании двух различных сред можно достичь подобных результатов.

Каждый теплообменник имеет и набор устройств, которые работают по особому принципу. Их разделяют на два вида:

В первом виде подразумевается использование двух разных жидкостей. Они взаимодействуют между собой с помощью разделительной стенки. В процессе обмена температурами, поток в обоих вариантах остаётся прежним и не изменяется. Во втором виде теплообменников прослеживается наличие рабочего элемента, который в то же время является и источником поставляемого тепла и своеобразным зарядным устройством. При контакте с жидкостями, элемент нагревается, издавая в пространство необходимое тепло. В этом случае, поток тепла может изменить своё направление.

Виды теплообменников

На сегодняшний день имеется несколько видов теплообменников:

  • погружные;
  • пластинчатые;
  • элементные;
  • витые;
  • графитовые;
  • спиральные;
  • двухтрубные;
  • кожухотрубные.

Погружной теплообменник

В качестве чувствительного элемента в этом приборе выступает цилиндрической формы змеевик. Он размещён в сосуде, который заполнен жидкостью. Подобная конструкция существенно снижает время необходимое на отдачу тепла прибором. Такого вида устройство считается одним из лучших по эффективным показателям работы прибором. Применяется исключительно в местах, где дозволено механическое включение и стадия закипания.

Пластинчатый теплообменник

Достоинства этого прибора можно перечислять долгое время. Это и лёгкость сборки, и простота чистки, и минимальное сопротивление гидравлики. Состав этого вида приборов подразумевает соединение крепёжных болтов, концевых камер, рамы и рабочей пластины. Последние элементы разделены специальными резиновыми прокладками. Их изготавливают из специальной стали. Технология монтажа пластин подразумевает установку резиновой прокладки без использования клеевых смесей, тем не менее позволяющая плотно прилегать отдельным частям друг к другу. Схема подачи рабочей среды может иметь три варианта: прямоточную, смешанную и противоточную.

Элементный теплообменник

Особенностью строения этого прибора является соединение частей единую систему. Если рассматривать принцип их работы, то он во многом схож с работой кожухотрубных теплообменников. Схема подачи рабочей среды работает только противоточно. Этот агрегат сочетает в себе небольшое количество труб.

Витой теплообменник

Чувствительный элемент этого прибора имеет название концентрического змеевика. Они закрепляются на специальных головках, получая защиту от кожуха. Используется схема с двумя жидкостями, один вид которой заполняет имеющиеся трубки, а другой располагается в пространстве между ними. Считается, что этот вид агрегата прекрасно переносит различные перепады давления и обладает высоким показателем стойкости к износу.

Графитовый теплообменник

Его устройство позволяет защитить конструкцию от воздействия коррозии. Также этот прибор отлично проводит тепло. Состоит агрегат из блоков, имеющих форму прямоугольника и цилиндра. Движение рабочей жидкости осуществляется по перекрёстной схеме. В составе теплообменника можно увидеть металлический корпус, трубки, решётки и крышки.

Спиральный теплообменник

Принцип работы этого прибора заключается в использовании металлических листов. Их скручивают в спираль и закрепляют на особом механизме под названием крен. Для полноценной работы необходимо обеспечить герметизацию теплообменника. Её достигают при помощи сваривания отдельных её частей или укладкой прокладки. Такие приборы довольно сложно создавать, обслуживать и ремонтировать. Запрещается использовать устройство в системе с давлением выше 10 кгс/см 2 . Эти недостатки успешно заменяет небольшой вес и размер прибора, а также его высокий показатель эффективности.

Двухтрубный теплообменник

Главными основными частями этих приборов являются трубы разного диаметра. В качестве рабочей среды используется жидкость и газ. Теплообменник используется в местах, где существуют большие перепады давления, успешно преодолевая эти трудности. Дополнением к положительным качествам прибора становится высокий уровень передачи тепла, а также простота обслуживания и монтирования. К сожалению, такие приборы дорого оцениваются продавцами.

Кожухотрубный теплообменник

Кожухотрубный прибор состоит из нескольких частей: элементов, компенсирующих напряжение, пучков труб, патрубков, корпуса, крышки и трубных решёток. Особенностью кожухотрубного устройства считается изготовления их наклонными или горизонтальными/вертикальными.

Принцип работы на примере пластинчатого теплообменника

Этот теплообменник был выбран непросто. Он отличается довольно сложным принципом действия, а потому идеально освещает некоторые общие особенности каждого вида агрегата. Каждая из пластин устройства монтируется к другой части с поворотом равным 180 градусов. В стандартном составе прибора можно встретить до четырёх подобных элементов. В комплекте они создают пакеты, которые отвечают за коллекторный контур. Сам же контур функционирует для создания движения теплоносителя. Конструкция теплообменника подразумевает наличие двух крайних контуров. Именно они не участвуют в процессе создания тепла механизмом.

Читайте также:  Как ремонтировать холодильник?

На сегодняшний день производители техники предлагают пользователю получить два различных вида комплектации.

  1. Одноходовой. Теплоноситель разделяется и создаёт параллельные потоки. Практически сразу же они стекают в выводной порт.
  2. Многоходовой. Этот вариант подразумевает использование сложной схемы. Теплообменник начинает своё движение по одинаковому количеству задействованных каналов. Такой принцип работы подразумевает наличие дополнительных элементов (пластин), которые заканчиваются заглушками в отводных портах. Эта особенность добавляет сложности в обслуживание подобных элементов.

Общие советы от специалистов

Теплообменники имеют сложную структуру, хотя в большинстве случаев советы по их использованию сводятся к одинаковым фразам. Конечно же, конструкция каждого из них уникальна, а потому примером выступает кожухотрубный теплообменник.

Вся сложность заключена в единственном правиле – как и любой прибор на планете, устройство теплообменника требует ремонта. Каждая процедура ремонта влечёт ряд второстепенных проблем, который специалисты стараются решить подручными средствами и способами. В этом механизме, как и в большинстве видов, присутствуют разные трубки. Именно они и являются самой частой причиной поломок. При проведении даже диагностики исправности этих элементов конструкции, следует чётко понимать – малейшее неверное действие и прибор может снизить уровень работы.

Все чаще встречаются люди и организации, которые покупают несколько теплообменников сразу. Эта особенность позволяет сразу же заменить повреждённое устройство новым.

Некоторые нюансы могут возникнуть и при регулировке агрегатов. Если неправильно ввести значения, то площадь работы теплообменника резко снизится. В этом случае происходит нелинейное изменение рабочей площади.

Главным советом специалистов становится отказ от самостоятельных действий по созданию любого вида теплообменника. Процесс рассчитан исключительно на производственный монтаж, а потому в домашних условиях его повторить невозможно.

Существует большое количество теплообменников. Одни из них дешевле, другие надёжнее, а третьи выдают лучший результат работы. Выбрать прибор сложно, но, возможно, зная основные их характеристики. Не стоит забывать и о правилах использования устройств, будь это кожухотрубные или пластинчатые изделия. Каждый вид работает исключительно с чёткими параметрами давления и условиями окружающей среды. Не стоит забывать и о советах специалистов, работающих с механизмами не первый год и знающих их особенности.

Теплообменное оборудование

Теплообменное оборудование – это набор различных устройств и агрегатов, осуществляющих или способствующих передаче тепла от горячего теплоносителя холодному.

Теплоноситель – это среда, обладающая определенным объемом тепла. Ей могут быть: вода, антифриз, нефть, кислоты, газы и многие другие виды веществ.

Показатели работы теплообменного аппарата

К теплообменному оборудованию можно отнести насосы, насосные станции, приборы автоматики, запорную арматуру и, кончено же, теплообменники.

Главное условие применения любого оборудования – высокая продуктивность. У теплообменного аппарата этот показатель зависит от ряда критериев:

  1. Коэффициент теплопередачи определяется агрегатным состоянием вещества, конструкцией и материалом теплообменника.
  2. Площадь теплообмена: чем больше поверхность соприкосновения рабочей среды с греющим элементом, тем большее количество энергии сможет принять теплопотребитель.
  3. Разность температур – движущая сила процесса.

На эффективность работы прибора большое значение оказывает способ передачи энергии: теплопередача, конвекция или излучение. Один аппарат может сочетать в себе все три типа в разных частях устройства.

Классификация промышленных теплообменных аппаратов

Современные установки можно классифицировать по разным критериям: по принципу работы, внутренней конструкции, виду теплоносителей, их взаимодействию.

Современные производители предлагают теплообменники, которые позволяют осуществлять следующие виды процессов:

  • нагревание;
  • конденсация;
  • охлаждение;
  • плавление;
  • дистилляция;
  • затвердевание;
  • выпаривание;
  • кристаллизация.

В зависимости от потенциала теплоносителя можно выделить виды теплообменного оборудования:

  1. Низкотемпературные аппараты.
  2. Высокотемпературные аппараты, функционирующие при температуре 400-2000 °С: промышленные печи.
  3. Среднетемпературные аппараты, функционирующие при температуре 150-700 °С: устройства для сушки различных изделий, утилизации тепла, обработки предметов.

По принципу действия различают:

  1. Рекуперативные аппараты – приборы, в которых передача энергии осуществляется через перегородку. Пример: паровой котел.
  2. Регенеративные аппараты – установка, в которой один и тот же элемент поочередно омывается холодной и горячей средой. Пример: воздухонагреватель доменной печи, регенератор стеклоплавильной и мартеновской установки.
  3. Смесительные аппараты – устройство предлагает непосредственный контакт и смешивание двух или более рабочих сред для осуществления теплообменного процесса. Пример: скруббер, градирни – башенные охладители.

Первые две разновидности теплообменников называются поверхностными. Обязательное условие для передачи энергии в таких устройствах – промежуточный элемент в виде поверхности твердого тела.

По направлению движения типы теплообменного оборудования классифицируют на:

  1. Прямоточные модели: горячая и холодная среда двигаются в одном направлении вдоль функционального элемента.
  2. Противоточные модели: встречное движение веществ.
  3. Перекрестноточные модели: перекрёстное направление потоков.

Грамотный выбор рабочей среды и типа теплообменного устройства – залог высокой производительности технологического процесса.

Рекуперативные аппараты

Рекуперативные теплообменники – устройства, работающие в непрерывном или циклическом режиме. Прибор периодического действия – это объемный сосуд, который поочередно через одинаковые периоды времени заполняется горячей и холодной рабочей средой.

Наиболее популярен прибор со стационарным режимом. Известный пример – кожухотрубный теплообменник.

Кожухотрубный теплообменник

Кожухотрубный аппарат состоит из скрепленных пучков труб. Межтрубная и трубная зона внутри теплообменника такого типа разделена на несколько ходов перегородками. Отличительные особенности:

  1. Диаметр трубы – 12-38 мм. Это оптимальный размер для сохранения компактности устройства и хороших значений металлоемкости.
  2. Длина пучка труб – 0,9-6 м.
  3. Толщина стенки – 0,5-2,5 мм.

Фиксация труб осуществляется решетками с помощью сальникового соединения, запайки или развальцовки. Кожух аппарата имеет цилиндрическую форму и состоит из сваренных листов стали. Толщина стенки зависит от особенностей технологического процесса и максимального давления рабочей среды, но не может быть меньше 4 мм. Разная температура кожуха и трубы вызывает напряжение, для компенсации которого используют линзовые компенсаторы и трубы U- и W-образной формы, плавающие камеры.

Многоходовые трубы и межтрубное пространство позволяют увеличить скорость движения жидкости и интенсифицировать теплообмен для рабочей среды с низким показателем теплоотдачи.

Секционные теплообменники

Секционная конструкция востребована в разных отраслях промышленности. Отличительные особенности прибора:

  • небольшое различие скоростей циркуляции жидкости в трубном и межтрубном пространстве;
  • удобная регулировка и изменение площади нагрева;
  • конструкция оснащена большим объемом дорогостоящих деталей: переходные камеры, фланцы, трубные решетки, компенсаторы;
  • на перемещение рабочих сред требуется много электроэнергии.

Пример секционного аппарата – установка «труба в трубе», популярная в химической, нефтяной и газовой сферах.

Спиральные теплообменники

Спиральные аппараты – конструкция, в которой каналы для циркуляции рабочей среды образованы свернутыми в спираль листами. Для фиксации расстояния применяют штифты или приваренные бобышки. Оптимальный материал для намотки спирали – легированная и углеродистая сталь, алюминий, никель, титан.

Секционные приборы можно объединять в блоки. Они применяются для охлаждения и нагрева растворов и жидкостей, конденсации чистого пара из смеси.

Пластинчатые теплообменники

Пластинчатые устройства оснащены пластинами, которые объединены в пачку. Для увеличения рабочей площади практикуют разные профили элементов, включают в конструкцию профилированные вставки.

Наиболее подходящим материалом для изготовления пластин является сплав листовой стали с титаном, алюминием, мельхиором.

  • толщина пластины 0,5-2 мм;
  • поверхность теплообмена одного элемента 0,15-1,4 м2;
  • размер щелевидного канала 2-5 мм.

Нагревающий агент циркулирует в межканальном пространстве, внутри каналов – рабочая среда, которая поглощает аккумулированное в пластинах тепло.

Пластинчатые устройства можно разделить на два вида: неразборные и разборные. Второй тип подразумевает использование эластичных прокладок для создания герметичности конструкции. Они более востребованы из-за возможности произвести механическую и химическую промывку с обеих сторон. Разборный теплообменник выдерживает давление до 2,5 МПа, температуру – до +150 °С. Паяная конструкция способна функционировать при давлении рабочей среды – до 3 МПа и температуре – до +400 °С.

Основная сфера применения пластинчатых теплообменников: нагревание и охлаждение жидких растворов, монтаж греющих камер выпарных приборов, выделение из смеси чистого пара.

Ребристые теплообменники

Ребристые теплообменники – теплообменное оборудование, применяемое в условиях, когда коэффициенты теплоотдачи циркулирующих сред значительно отличаются друг от друга. Поверхность элемента со стороны теплоносителя с низкой теплоотдачей увеличивают за счет ребристой поверхности.

Для изготовления труб с наружным и внутренним оребрением применяют литье, сварку, вытяжку из сплава, выдавливание горячего металла через матрицу. Эффективность ребер возрастает, если элементы выполнены из теплопроводных материалов – алюминия, латуни или меди. В зависимости от исполнения труб максимальная рабочая температура варьирует от +120 до +330 °С.

Регенеративные теплообменники

Регенеративные аппараты целесообразно применять в технологических процессах, характеризуемых сильными температурными скачками. Конструкция оборудования предполагает передачу тепла от одной среды к другой посредством насадки – теплоаккумулирующей массы. Циклы работы аппарата включает в себя следующие процессы:

  • поступление горячего теплоносителя;
  • аккумулирование тепла в насадке;
  • поступление холодного теплоносителя;
  • нагревание рабочей среды за счет накопленной в насадке энергии.

Продолжительность одного цикла — от нескольких минут до нескольких часов.

Непрерывный процесс теплообмена возможен при наличии двух регенераторов: когда в одном из них происходит аккумулирование энергии, в другом осуществляется нагрев холодного теплоносителя. После автоматического переключения регенераторов процесс в каждом отсеке сменяется противоположным.

Смесительные теплообменники

Смесительные аппараты – приборы, обмен энергией в которых происходит при непосредственном взаимодействии и смешивании двух или более рабочих сред.

Эффективность работы контактного теплообменного оборудования напрямую зависит от площади соприкосновения теплоносителей. Один из практикуемых способов увеличения производительности – разделение жидкости на капли и мелкие струи, газа – на пузырьки. Отличительная особенность оборудования – обмен энергией происходит кондуктивным способом и путем обмена массой.

Сфера применения: охлаждение газообразных веществ водой, конденсация пара, мокрая очистка газов.

Преимущества и недостатки разных видов теплообменных аппаратов

Особенности конструкции, использование определенного типа материала и теплоносителя накладывают на оборудование определенные ограничения, приводят к недостаткам и достоинствам.

Кожухотрубный теплообменник:

  • широкий рабочий диапазон давления и температуры;
  • высокая устойчивость к гидроударам;
  • низкие требования к чистоте раствора;
  • простая конструкция.
  • низкий коэффициент передачи энергии;
  • температурная деформация.

Пластинчатый теплообменник:

  • компактность;
  • нет потребности в сильной температурной разнице между рабочими средами;
  • медленное образование солей и иных загрязнений;
  • простой ремонт.
  • высокая себестоимость;
  • необходимость обучения персонала для работы на приборах;
  • высокая стоимость обслуживающего оборудования.

Витой теплообменник:

  • эксплуатация при высокой температуре и давлении;
  • устойчивость к деформациям.
  • малая теплоотдача.

Спиральный теплообменник:

  • компактные размеры;
  • высокая продуктивность;
  • малое гидравлическое сопротивление.
  • серьезные ограничения по рабочему давлению;
  • высокая стоимость ремонта и сложное изготовление оборудования.

Выбрать один лучший теплообменный аппарат и оборудование невозможно. В разных производственных процессах и условиях для высокой производительности имеют значение разные показатели. Определение оптимальной модели должно осуществляться с учетом технологии изготовления, ожидаемых функций и иных параметров установки.

Поэтому при подборе теплообменного оборудования всегда лучше обращаться к профессионалам.

Виды теплообменников

Виды теплообменников, которые сегодня существуют, слишком разнообразны. Поэтому в рамках данной статьи мы дадим общее определение пластинчатому теплообменному оборудованию.

Что такое теплообменник?

Назначение теплообменников – передача тепла от нагретой среды к холодной. А применение не ограничивается какой-то одной сферой индустрии – оборудование используется повсеместно (в энергетике, металлургии, пищевой и химической промышленности, на тепловых пунктах, в системах отопления, вентилирования и кондиционирования и так далее).

Виды оборудования по передаче тепла

1. Поверхностные теплообменники

Теплообмен между разными средами осуществляется через стенки из специального теплопроводящего материала, т.е. контура здесь полностью герметичны. Оборудование поверхностного типа в свою очередь делится на:

  • рекуперативные (температурный обмен между теплоносителями осуществляется через тонкие стенки контуров, а поток среды имеет неизменное направление);
  • регенеративные (отличаются от рекуперативных изменяющимся направлением потока).

2. Смесительные теплообменники

Здесь передача тепла достигается путем смешивания двух сред и данный вид теплообменника применяется намного реже вышеуказанных.

Виды оборудования по применению

  • кожухотрубные теплообменники – состоят из пучка труб, соединенных в решетку при помощи пайки или сварки;
  • пластинчатые теплообменники – имеют площадь теплообмена, состоящую из пластин, соединенных термостойкими уплотнителями;
  • витые теплообменники – собираются из концентрических змеевиков, а рабочая среда в них движется по изогнутым трубам и по межтрубному пространству;
  • спиральные теплообменники – представляют собой тонкие стальные листы, свернутые в спираль;
  • водяные, воздушные и т.д.

Видов очень много, поэтому перечислять их все просто не имеет смысла. Самым популярным из вышеперечисленного оборудования считается пластинчатый теплообменник, вот его особенности и рассмотрим детальнее.

Подробнее о видах теплообменников

1. Пластинчатые разборные теплообменники (состоят из отдельных пластин, разграниченных резиновыми прокладками, двух концевых камер, рамы и крепежных болтов)

Читайте также:  Монтаж сушилки для рук в ванной

2. Пластинчатые паяные теплообменники (состоит из набора металлических гофрированных пластин, изготовленных из нержавеющей стали, которые соединены между собой посредством пайки в вакууме с использованием медного или никелевого припоя)

3. Пластинчатые сварные теплообменники предназначены для использования в условиях экстремально высоких температурах и давлениях на установках, параметры которых не позволяют использовать уплотнения. Эти теплообменники отличаются высокой эффективностью, малыми габаритами и требуют минимального обслуживания. Материал пластин – нержавеющая сталь, титан, никелевые сплавы.

Рабочие среды – высокотемпературный пар, газы и жидкости, в том числе агрессивные, а также их смеси. Сварные ТО отличаются от РПТО опять же методом герметизации пластин, в сварных аппаратах пластины свариваются сталью, образованные сварные кассеты компонуются внутри стальных плит. Применяются в тех. процессах с агрессивными средами, газовыми средами, на больших давлениях.

4. Пластинчатые полусварные теплообменники. Аналогично, как и в сварных аппаратах, пластины свариваются в кассеты, но метод соединения кассет между друг другом посредством паронитовых соединений. Область применения – тех. процессы с агрессивными средами. Пластинчатый полусварной теплообменник сделан в виде конструкции из небольшого количества сварных модулей. А они в свою очередь соединены при помощи лазерной сварки в виде пары пластин. Вся эта конструкция собрана между торцевыми плитами при помощи болтов. Между каждым сварным модулем проложен резиновый уплотнитель.

Такие теплообменники применяются в особых случаях, когда в качестве теплоносителя будет использовано вещество с очень высокой температурой, давлением, любым другим опасным параметром или просто опасное вещество. В этом случае оно будет перемещаться в заваренных каналах по теплообменным пластинам.

5. Кожухотрубные теплообменники (их основными элементами являются пучки труб, собранные в трубные решетки и помещенные в корпус, патрубки и концы труб крепятся в трубных решетках развальцовкой, сваркой, пайкой)

6. Спиральные теплообменники (поверхность нагрева образуется двумя тонкими металлическими листами, приваренными к разделителю (керну) и свернутыми в виде спирали) В спиральном теплообменнике, в отличии от РПТО используются всего две пластины, свернутые вокруг керна в спираль и «упакованные» в сваренные кожух.

Используются спиральные аппараты в тех. процессах, с агрессивными средами и высокими давлениями (P.S. на данный момент из брендов на нашем рынке остался один производитель – Alfa Laval. GEA и Sondex отказались от дальнейшего выпуска данных аппаратов. Исключительная компактность и эффект самоочистки делают спиральные теплообменники Альфа Лаваль в высшей степени универсальным оборудованием – они применимы, как в работе с жидкими неоднородными средами, склонными к образованию отложений на теплопередающих поверхностях, так и при наличии конденсации пара или газа в условиях высокого вакуума.

Конструкция теплообменника

Оборудование состоит из двух основных плит – неподвижной и подвижной. В обеих пластинах сделано несколько отверстий, предназначенных для входа и выхода среды. Между двумя основными плитами установлено множество пластин, которые герметизируют с помощью резиновых прокладок. Направляющие сверху и снизу определяют положение оборудования. Пластины можно сжать до нужного размера, с помощью специальных гаек. Расположение пластин не случайно, пластины через одну повернуты на 180°, относительно соседних. Благодаря этому входящее отверстие канала уплотнено дважды.

1 – передняя неподвижная плита, 2 – верхняя направляющая, 3 – задняя подвижная плита, 4 – задняя стойка (штатив) , 5 – рабочая пластина с уплотнением, 6 – нижняя направляющая, 7 – патрубки, 8 – ролики для перемещения пластин вдоль направляющих, 9 – шильд с названием и техническими данными, 10 – шпильки

Принцип работы

Главный элемент теплообмена – жидкость. Жидкости перемещаются в противотоке по каналам, созданным благодаря гофрированным пластинам, которые образуют каналы. Пристенный гофрированный слой, из-за высокой скорости потока начинает набирать турбулентность. Каждая среда продвигается по одной пластине, но с разных ее сторон, во избежание смешения. Все пластины теплообменника одинаковые, и установить их так же просто, как и сварной теплообменник. Благодаря этому приспособление образует некий пакет, в котором находятся 4 коллектора, они предназначены для ввода и отвода различных сред. В теплообмене принимают участие все пластины за исключением крайних (первой и последней).

Имея даже самые низкие показатели гидравлического сопротивления, теплоотдачу можно увеличить при помощи тонкого потока и турбулентности. При этом и турбулентность, и тонкий поток очищают пластины от нежелательных и даже самых устойчивых налетов.

Задняя и передняя плита имеют отверстия, которые подключаются к трубопроводу, и производят нагревание сред. Трубы могут отличаться между собой методом присоединения (к примеру, есть тип с резьбой ГОСТа №6357 и с резьбой по ГОСТу №12815). Оба они зависят от типа устройства. Размещенные параллельно пластины теплообменника создают каналы. Проходя все каналы, среда осуществляет теплообмен и покидает оборудование. Это значит, что пластины самый важный элемент всего теплообменника. Их толщина составляет всего 0,5 мм, производят их из нержавеющей стали методом холодной штамповки. Между пластинами устанавливают устойчивую к температурам резину, которая делает каналы герметичными. Входящие и выходящие отверстия укрепляют специальной прокладкой и кольцами, спереди и сзади соответственно.

Выбор теплообменника происходит с учетом его рабочих требований. Чем они выше – тем больше потребуется пластин. Именно число пластин отвечает за общую эффективность.

Сферы применения

Пищевая промышленность. Производя спирт, пиво, растительное масло, сахар и молочные продукты, обязательно используют теплообменники. Здесь они предназначены для пастеризации продуктов, их охлаждения и возможного испарения. Для таких целей очень часто используют паяный вид пластинчатых теплообменников, хотя нередко также применяют разборной теплообменник.

Металлургия. Охлаждение на металлургии нужно как нигде. Это связано с тем, что печи, стаканы, различные гидравлические системы и другие устройства вырабатывают огромное количество тепла. Для снижения этого показателя используют пластинчатые теплообменники, которые выступают как охладители. В качестве охладителей могут использоваться паяные, сварные и даже спиральные теплообменники. Выбор устройства напрямую зависит от условий его эксплуатации.

Судостроение. За охлаждение главного двигателя судна и всей центральной системы также отвечает теплообменник. Здесь вместо обычной среды может быть использована морская вода или моторные масла различных уровней вязкости. Кроме этого на судне теплообменники могут применять для поддержания работы отопительной системы, для ГВС, но это касается исключительно крупных суден.

Нефтегазовая промышленность. Для крекинга, охлаждения и подогрева нефти также используются пластинчатые теплообменники. Зачастую такие теплообменники:

  • низкого давления
  • сетевые
  • химической подготовки воды

В таких теплообменниках принято использовать пластины из титана, толщиной в 7 миллиметров, с давление в 25 бар. Для такого оборудования применяют уплотнители NBR или Витон, если нужны прокладки устойчивые к высоким температурным условиям.

Коммунальное теплоснабжение. Подогрев воды, «теплый пол», горячее водоснабжение – для всего этого также используют пластинчатые теплообменники. Такое устройство способно работать при температуре до 150 градусов по Цельсию, с давлением до 16 кПа. В таких теплообменниках используют пластины из антикоррозийной стали, толщина которых может достигать 5 миллиметров. Имеется уплотнение из этиленпропилена.

Исходные данные и расчет теплообменника

1 – Температура на входе и выходе обоих контуров.
Пример: максимальная входная температура – 55°С, а LMTD – 10°С. Теплообменник будет дешевле и меньше в том случае, когда эта разница будет больше.

2 – Максимально допустимая рабочая температура, давление среды.
Цена будет ниже в случае плохих параметров.

3 – Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
Или пропускная способность теплообменника. Часто указывают лишь один параметр – объем расхода воды. Общий массовый расход можно вычислить если объем пропускной способности умножить на плотность. Например, плотность холодной воды в центральной системе примерно равна 0.99913.

4 – Тепловая мощность (Р, кВт).
Или тепловая нагрузка (количество тепла, отданное теплообменником) вычисляет по формуле:

P = m * cp *δt

  • где m – расход среды
  • cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C))
  • δt – температурная разность на входе и выходе одного контура (t1 – t2)

5 – Дополнительные характеристики.

  • чтобы выбрать состав пластин, необходимо узнать в какой рабочей среде будет использоваться теплообменник и ее вязкость;
  • средний температурный напор LMTD (рассчитывается по формуле ΔT1 – ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) – T4(выход горячего контура) и ΔT2 = T2 (вход холодного контура) – T3 (выход холодного контура);
  • уровень загрязненности среды (R) – редко используют, так как этот параметр нужен только в некоторых случаях.

Видео «Как рассчитать теплообменник?»


Теплообменные аппараты: виды, устройство, принцип работы

Введение

Теплообменник – техническое устройство, предназначенное для передачи тепла между нагретой средой и холодной. Чаще всего теплообмен осуществляется через элементы конструкции аппарата, хотя встречаются агрегаты, принцип действия которых основан на смешении двух сред.

Области применения теплообменных аппаратов:

  • системы отопления;
  • металлургия;
  • энергетика;
  • тепловые пункты;
  • химическая и пищевая промышленности;
  • системы кондиционирования и вентилирования воздуха;
  • коммунальное хозяйство;
  • атомная и холодильная отрасли.

Виды теплообменных аппаратов

Теплообменные аппараты подразделяются на несколько групп в зависимости от:

  • типа взаимодействия сред (поверхностные и смесительные);
  • типа передачи тепла (рекуперативные и регенеративные);
  • типа конструкции;
  • направления движения теплоносителя и теплопотребителя (одноходовые и многоходовые).

Наиболее наглядно классификация теплообменных аппаратов представлена на следующем изображении (если нужно увеличить картинку, то просто кликните по ней):

Рис. 1. Виды устройств теплообменников в зависимости от принципа работы

По типу взаимодействия сред

Поверхностные

Теплообменные аппараты данного вида подразумевают, что среды (теплоноситель и теплопотребитель) между собой не смешиваются, а теплопередача происходит через контактную поверхность – пластины в пластинчатых теплообменниках или трубки в кожухотрубных.

Смесительные

Кроме поверхностных теплообменников используются агрегаты, в основе эксплуатации которых лежит непосредственный контакт двух веществ.

Наиболее известным вариантом смесительных теплообменников являются градирни:

Рис. 2. Градирни – один из видов смесительных ТО

Градирни используются в промышленности для охлаждения больших объемов жидкости (воды) направленным потоком воздуха.

К смесительным теплообменникам относятся:

  • паровые барботеры;
  • сопловые подогреватели;
  • градирни;
  • барометрические конденсаторы.

По типу передачи тепла

Рекуперативные

В данном виде устройств теплопередача происходит непрерывно через контактную поверхность. Примером такого теплообменного аппарата является пластинчатый разборный теплообменник.

Регенеративные

Отличаются от рекуператоров тем, что движение теплоносителя и теплопотребителя имеют периодический характер. Основная область применения таких установок – охлаждение и нагрев воздушных масс.

Установки с подобным типом действия нужны в многоэтажных офисных зданиях, когда теплый отработанный воздух выходит из здания, но его энергию передают свежему входящему потоку.

Рис. 3. Регенеративный теплообменник

На изображении видно, как в теплообменник поступают 2 потока: горячий (I) и холодный (II). Проходя через коллектор 1, горячая среда нагревает гофрированную ленту, свернутую в спираль. В это время через коллектор 3, проходит холодный поток.

Спустя какое-то время (от нескольких минут до нескольких часов), когда коллектор 1, заберет достаточное количество тепла (точное время зависит от тех. процесса), крыльчатки 2 и 4 поворачиваются.

Таким образом изменяется направление потоков I и II. Теперь холодный поток идет через коллектор 1 и забирает тепло.

По типу конструкции

Вариаций конструкций теплообменных аппаратов очень много. Их выбор и подбор конкретной модели зависит от большого количества условий эксплуатации и технических характеристик:

  • мощность теплообменника;
  • давление в системе;
  • тип сред (агрессивные или нет);
  • рабочие температуры;
  • прочие требования.

Подробную классификацию типов конструктивов теплообменных аппаратов можно посмотреть выше на Рис. 1.

По направлению движения сред

Одноходовые теплообменники

В данном виде агрегатов теплоноситель и теплопотребитель пересекают внутренний объем теплообменника однократно по кратчайшему пути. Наглядно это показано в следующем видео:

Подобная схема движения в ТО используется в простых случаях, когда не требуется повышать теплоотдачу от теплоносителя хладогенту. Кроме того, одноходовые теплообменники требуют более редкого обслуживания и промывки, так как на внутренних поверхностях скапливается меньше отложений и загрязнений.

Многоходовые теплообменники

Применяются, когда рабочие среды плохо отдают или принимают тепло, поэтому КПД теплообменного аппарата увеличивают за счет более длительного контакта теплоносителя с пластинами агрегата.

Пример работы двухходового пластинчатого теплообменника представлен в данном видео:

Устройство теплообменника

Как отмечалось выше, конструкции теплообменных аппаратов очень сильно отличаются между собой, поэтому подробно о каждой из них будет рассказано в следующих статьях.

В качестве примера можно рассмотреть пластинчатый разборный теплообменник, как наиболее современный и вытесняющий старые поколения теплообменных аппаратов: кожухотрубные (кожухотрубчатые), «труба в трубе» и другие виды.

Данный вид ТО состоит из двух главных пластин: подвижной и неподвижной прижимных плит. Обе плиты имеют несколько отверстий.

Отверстия, имеющие входящее и выходящее назначение потоков, надежно укрепляют специальной прокладкой и прочными кольцами спереди и сзади соответственно.

Рис. 4. Устройство РПТО

При монтаже к входным и выходным отверстиям через патрубки подключаются элементы трубопровода. Для соединения могут быть использованы трубы различного диаметра и с разным типом резьбы (современные требования предлагают использовать резьбу ГОСТа №12815 и ГОСТа №6357). Оба вида имеют прямую зависимость от устройства и его вида.

Читайте также:  Как работает аэрогриль?

Посередине между прижимными плитами размещается множество пластин. Толщина пластин находится в пределах всего 0,5 мм, изготавливаются они, только из нержавеющей стали или титана с помощью метода холодной штамповки.

Все слои пластин перемежаются тонкой специальной уплотнительной резиной, которая устанавливается между всеми слоями пластин. Материал резины обладает заметной повышенной устойчивостью к высоким температурам, благодаря которой рабочие каналы становятся полностью герметичными.

Прямые направляющие снизу и сверху обеспечивают фиксацию пакета пластин, а также являются направляющими при сборке агрегата. Пластины сжимаются до необходимого размера при помощи затяжных гаек.

Внутреннее расположение пластин выбрано не случайно, каждая пластина через одну повернута на 180° относительно, рядом расположенных, соседних пластин. Благодаря данному устройству теплообменного аппарата входящее канальное отверстие имеет двойное уплотнение.

Наглядно устройство пластинчатого теплообменника, его сборку и принцип действия можно посмотреть в данном видео:

Принцип работы теплообменника

Передняя и задняя плита имеют отверстия, которые подключаются к трубопроводу. По ним теплоноситель и теплопотребитель поступают внутрь агрегата.

Рис. 5. Движение сред внутри пакета пластин

Пристенный слой гофрированного типа, в условиях потока, имеющего большую скорость, начинает постепенно набирать турбулентность. Каждая среда перемещается на встречу друг другу с разных сторон пластины, чтобы избежать смешения.

Параллельно расположенные пластины формируют рабочие каналы. Перемещаясь по всем каналам, каждая среда производит тепловой обмен и покидает внутренние пределы оборудования. Это означает, что все пластины являются самым важным элементом среди всех деталей теплообменника.

Потоки внутри пластинчатого теплообменника могут идти по одноходовым и многоходовым схемам в зависимости от технических характеристик и условий решаемой задачи:

Рис. 6. Схемы движения теплоносителей в пластинчатом разборном теплообменнике в зависимости от принципа работы

Заключение

В данной статье вы смогли ознакомиться с видами теплообменников, их назначением, сферами применения. В следующей статье мы подробно рассмотрим пластинчатые теплообменники – в чем их особенность, какие виды существуют и как они отличаются между собой, поэтому подписывайтесь на e-mail рассылку и новости в соцсетях, чтобы не пропустить их.

Стоит помнить, что в настоящее время кожухотрубные (кожухотрубчатые) теплообменники активно вытесняются пластинчатыми, поскольку последние более универсальны и просты в обслуживании.

Если вам нужно подобрать теплообменник под свою задачу, то вы можете посмотреть модели, которые поставляет наша компании в соответствующих разделах каталога.

Если же у вас возникают трудности, то свяжитесь с нашими инженерами или заполните форму:

Разновидности теплообменников для отопления: как разобраться в них и выбрать нужный?

Теплообменник — неотъемлемый элемент системы отопления, в котором происходит процесс обмена теплом между несколькими средами.

Существует несколько разновидностей теплообменников.

Для чего нужен теплообменник ГВС в системе отопления

Устройство представляет собой 2 плиты: одна из них статическая, а другая — подвижная. Обе они с отверстиями, между которыми зафиксированы загерметизированные прокладками пластины.

Суть принципа работы такого прибора в том, что пластины гофрированного типа образуют каналы, по которым циркулирует жидкость. Повышение коэффициента переданного тепла от её прогретой части к холодной возникает за счёт увеличения площади контакта.

В пристенном слое гофрированного типа со временем образуется процесс турбулентности. По разным сторонам одной пластины происходит перемещение отдельной среды. Такой способ движения предотвращает их перемешивание.

Прогрев обеих сред возникает вследствие присоединения устройства к трубопроводу. После того как среда закончит своё прохождение по всем каналам, она покинет теплообменник.

Такое оборудование делает возможным:

  • эксплуатировать при необходимости полученного от носителя энергии вторичного тепла для бытовых нужд;
  • применять остаточное тепло при поступлении электроэнергии;
  • формировать необходимый температурный режим для проведения химических процессов;
  • удерживать температурный режим теплоносителя на установленном уровне в бытовых отопительных системах.

Существуют следующие виды теплообменников.

Смесительные водяные

Представляют собой приборы, в которых тепло передаётся через непосредственный контакт двух сред: горячей и холодной.

Суть действия такого теплообменника в том, что в специальной камере соединяются жидкость и пар, скорость которого при этом превышает сверхзвуковое значение.

Разгоняет его до такого показателя расчётное сопло. За счёт такого смешивания и происходит прогрев жидкости и паровая конденсация, а теплоноситель требуемой температуры циркулирует по системе отопления.

Камера прибора предусматривает наличие конденсационного вакуума. Работа теплообменника этой разновидности возможна даже при условии малого парового давления.

Поверхностные

Конструкция таких приборов представлена в виде биметаллических труб с алюминиевым оребрением накатного типа.

В этих устройствах происходит процесс обтекания твёрдого покрытия воздухом. Температуры поверхности и воздушного потока отличаются.

Тепловой обмен между средами осуществляется через стенку с нанесённым на неё специальным теплопроводящим материалом. Контура полностью изолированы друг от друга.

Поверхностные теплообменники делятся на 2 типа:

  • регенеративные (направление потока среды имеет свойство меняться);
  • рекуперативные (обмен теплом от одного теплоносителя к другому осуществляется через неплотные стенки контура, при этом направление потока среды остаётся постоянным).

Рекуперативный и его разновидности

Они подразделяются в соответствие с особенностями конструкции и областью применения.

Кожухотрубчатые

Это самые простые устройства. Они состоят из большого числа маленьких трубопроводов, которые спаяны в единый пучок и помещены в кожух. Такие теплообменники довольно громоздкие и занимают много места.

Применяются в испарителях, холодильниках, нагревателях, конденсаторах.

Погруженные

Представляют собой змеевики плоской либо цилиндрической форм, погруженные в ёмкость с жидкостью.

Эти теплообменники считаются неэффективными вследствие того, что с внешней стороны змеевика наблюдается низкий уровень теплоотдачи, а процесс омывания жидкостью проходит в крайне малом количестве.

Справка! Использование погруженного теплообменника будет продуктивным, если жидкость в ёмкости будет закипать или содержать механические дополнения.

Погруженные аппараты применяются в качестве холодильников и конденсаторов, а также для прогрева воды и растворов технологического типа.

Трубчатые

Приборы этой разновидности представляют собой 2 трубы, расположенные внутри друг друга и имеющие отличные диаметры. Так жидкость, нагрев или охлаждение которой требуется произвести, напрямую контактирует с теплоносителем.

Трубы для теплового обмена зафиксированы вдоль друг друга. За счёт разницы между их диаметрами у теплоносителя не возникает препятствий при его циркуляции.

Применяются такие теплообменники преимущественно в пищевой промышленности, в частности, в виноделии и при производстве молочной продукции.

А также использование таких приборов широко распространено в нефтяной, газовой, химической промышленностях.

Оросительные

Теплообменники этого типа представляют собой прямые трубы, расположенные друг над другом и орошаемые водой с наружной стороны. Они фиксируются с помощью сварки или применения «калачей» на фланцах. Орошающая жидкость идёт через верхний жёлоб, края которого имеют форму в виде зубчиков. Часть жидкости, подаваемой для орошения трубопроводов, испаряется.

Широко распространено использование таких агрегатов в качестве конденсаторов в холодильниках.

Графитовые: что это такое

Теплообменники блочного строения. Все прямоугольные или цилиндрические составляющие прочно зафиксированы специальными резиновыми или тефлоновыми прокладками и крышками.

Внутри этой конструкции происходит движение жидкости по перекрёстной схеме.

Изначально для устранения пористости графита его обрабатывают специальными смолами из формальдегида. Одна или обе среды при этом являются коррозионно-активными.

Важно! Если обе жидкости агрессивные, то обязательно по бокам на прижимные плиты наносятся специальные пластины из графита.

За счёт устойчивого воздействия таких приборов их применение пользуется большой популярностью в химической промышленности.

Пластинчатые воздушные с вентилятором

По своей конструкции делятся на разборные и паяные. Первые имеют большое распространение в силу того, что их можно разбирать и собирать, а при необходимости прочистки и увеличивать их эффективность путём наращивания дополнительных пластин.

Прибор состоит из пластин, между которыми расположены прокладки из резины, 2 концевые камеры, болты для стягивания и рама.

Стальные пластины имеют толщину 0,7 мм, их проточная сторона гофрирована или ребристая.

С целью герметизации процесса теплообмена к пластинами фиксируются прокладки из резины.

Теплоноситель в таких теплообменниках может перемещаться в прямом, обратном направлениях или смешанно.

Применяются такие устройства в отоплении, вентиляции, кондиционировании и холодильных установках. Кроме того, он используется в текстильной, нефтяной, целлюлозно-бумажной и других промышленностях.

Пластинчато-ребристые: принцип работы

Суть конструкции такого теплообменника в том, что есть единая система из раздельных пластин, между которыми расположены ребристые насадки.

Их разновидности представлены в широком диапазоне.

Для грамотной подборки формы каналов для прохождения жидкости, требуется использование различных насадок.

Важно! Применение таких устройств для теплового обмена возможно при температуре неагрессивных жидких и газообразных сред от +200 °C до —270 °C.

Используются эти теплообменники в различных транспортных установках.

Оребрённо-пластинчатые

Их отличие от вышеуказанных видов в том, что в основании конструкции используются оребренные панели с тонкими стенами, сформированные путём высокочастотной сварки.

Все они зафиксированы поочерёдно с возможностью поворота на 90 °C.

Применение таких теплообменников часто встречается как в промышленности (в тепловых технологических процессах), так и в быту (система вентиляции с возвращением тепла).

Спиральные

Бывают горизонтальные и вертикальные. Их конструкция состоит из 2 тонких листов из металла, зафиксированных к керну и загнутых в форме спиралей. Для придания листам дополнительной жёсткости к ним по обеим сторонам с помощью сварки присоединены бобышки дистанции.

У спиральных каналов есть ограничения в виде торцевых крышек. Уплотнения таких проходов производят путём заваривания с одной стороны и уплотнения прокладкой — с другой. По мере её износа происходит заваривание и с другой стороны.

Таким образом, исключается вероятность спешивания теплоносителей.

Используется этот прибор в пищевой, металлургической, целлюлозно-бумажной, горнодобывающей, нефтяной, газовой и других областях промышленности.

Как подобрать теплообменник ЦТП

При выборе важно обращать внимание на основные технические характеристики оборудования:

Толщина и материал пластин

Чем ниже масса прибора, тем выше коэффициент теплоотдачи. При этом важно ориентироваться на рекомендуемую толщину пластин. В основном она варьируется от 0,4 мм до 0,7 мм, подходящий материал — нержавеющая сталь.

Давление

Чем меньше этот показатель, тем ниже стоимость агрегата. Чтобы не наблюдалось сбоев в системе отопления, требуется обязательно знать это значение и указать его продавцу при приобретении.

Коэффициент передачи тепла

Это один из главных критериев выбора. Он показывает, какую единицу тепла способно передать устройство за определённое время от нагретой среды к холодной через площадь 1 кв. м. и разницу температур 1 К.

Для увеличения теплопередачи требуется меньшее количество пластин. Стоимость у такого теплообменника будет ниже. У оборудования с высокой ценой

Справка! При усилении потока возрастает и потребность в большом количестве чисток за счёт образования отложений.

Рекомендуемый и оптимальный коэффициент тепловой передачи — 7000 Вт/кв. м*К.

Масса

Вес теплообменника напрямую зависит от того, из какого материала он изготовлен. Прежде чем приобретать прибор, требуется определить, сколько места под него есть. При малых площадях лучше воздержаться от крупногабаритного оборудования.

Запас поверхности для теплообмена

У качественного агрегата этот показатель составляет 10—15%, в противном случае его работа не будет эффективной, так как малейший недогрев до установленной температуры или загрязнение приведут к прекращению рабочего процесса.

Помимо вышеуказанных параметров, также стоит учитывать количество тепловых потерь, основные свойства теплоносителя, характеристики труб для обмена теплом.

Типы и материалы

Разновидность теплообменника подбирается исходя из его целевого назначения и применяемого теплоносителя.

Самыми надёжными и долговечными считаются приборы из чугуна. Они не боятся коррозии и обладают высокой теплоёмкостью.

Минусы: крупногабаритность и медленная перестройка под заданное колебание температур. Они занимают достаточно много места.

У стальных агрегатов ощутимее ниже цена, но и уровень эффективности тоже занижен.

Самые распространённые — теплообменники из меди. У них высокий коэффициент теплопроводности, технологичности.

Для увеличения продолжения срока эксплуатации такие приборы с наружной стороны покрываются специальным защитным слоем.

Стальные теплообменники самые дешёвые, подвержены коррозии и имеют большой вес.

Популярные производители: фото

Все производители агрегатов дают гарантию на свою продукцию от 6 месяцев до 1 года.

Большим спросом пользуется продукция следующих фирм:

    Sondex;

Фото 1. Пластинчатый теплообменник, резьбовое соединение, толщина пластин 0,5 мм, производитель – «Sondex», Дания.

  • Ридан;
  • Alfa Laval;

    Фото 2. Пластинчатый теплообменник модели AQ2S, гофрированная поверхность пластин, производитель – «Alfa Laval».

  • Gea Машимпэкс;
  • Danfoss;

    Фото 3. Паяный пластинчатый теплообменник модели XB 04-1-8, изготовлен из кислотостойкой нержавеющей стали, производитель – «Danfoss».

  • Funke;
  • Этра.
  • Полезное видео

    Ознакомьтесь с видео, в котором рассказывается, как устроены кожухотрубные теплообменники.

    Низкий напор горячей воды и другие признаки засоренности

    • низкий напор горячей воды;
    • под кожухом скапливается и сыпется сажа;
    • после включения происходит быстрое отключение горелки;
    • плохой прогрев воды;

    Важно! Прежде чем начинать процесс очистки теплообменника необходимо убедиться, что исправны остальные элементы отопительной системы.

    Ссылка на основную публикацию