Как работает УЗО?

Как работает УЗО?

УЗО (Устройство Защитного Отключения) — это коммутационный аппарат предназначенный для защиты электрической цепи от токов утечки, то есть токов протекающих по нежелательным, в нормальных условиях эксплуатации, проводящим путям, что в свою очередь обеспечивает защиту от пожаров (возгорания электропроводки) и от поражения человека электрическим током.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

УЗО так же имеет другие варианты названий, например: дифференциальный выключатель, выключатель дифференциального тока, (сокращенно выключатель диф тока) и т.п.

Устройство и принцип работы УЗО

И так для наглядности представим простейшую схему подключения через УЗО лампочки:

Из схемы видно, что при нормальном режиме работы УЗО, когда его подвижные контакты замкнуты, ток I1 величиной, к примеру, 5 Ампер от фазного провода проходит через магнитопровод УЗО, затем через лампочку, и возвращается в сеть по нулевому проводнику, так же через магнитопровод УЗО, при этом величина тока I2 равна величине тока I1 и составляет 5 Ампер.

Согласно закону электромагнитной индукции ток I1 проходя через магнитопровод УЗО создает в нем магнитный поток Ф1 условной величиной равной 5 единиц, в свою очередь ток I2 так же создает в магнитопроводе магнитный поток Ф2 такой же величины равной 5 единиц, но так как направление тока I2 противоположно направлению тока I1, то и создаваемый им магнитный поток Ф2 так же противоположен магнитному потоку Ф1, т.е. магнитные потоки Ф1 и Ф2 направлены встречно по отношению друг к другу и соответственно, при равных значениях входящего и выходящего токов, уравновешивают друг друга, в результате чего суммарный магнитный поток в магнитопроводе равен нулю:

Так как суммарный магнитный поток в магнитопроводе отсутствует (равен нулю), во вторичной обмотке ток не индуктируется. Подвижные контакты замкнуты, электрическая цепь включена и находится в нормальном режиме работы.

Теперь представим, что одного из проводов электрической цепи коснулся человек. При этом часть электрического ток начинает протекать через тело человека создавая непосредственную угрозу для его жизни и здоровья:

В такой ситуации часть тока электрической цепи поступающая от фазного провода не будет возвращаться в сеть, а проходя через тело человека будет уходить в землю следовательно ток I2 который будет возвращаться в сеть через магнитопровод УЗО по нулевому проводу будет меньше тока I1 поступающего в сеть, соответственно и величина магнитного потока Ф1 станет больше величины магнитного потока Ф2, в результате чего в магнитопроводе УЗО суммарный магнитный поток уже не будет равен нулю.

К примеру ток I1=6А, ток I2=5,5А, т.е. 0,5 Ампера протекает через тело человека в землю (т.е. 0,5 Ампера — ток утечки), тогда магнитный поток Ф1 будет равен 6 условных единиц, а магнитный поток Ф2 — 5,5 условных единиц тогда суммарный магнитный поток будет равен:

Фсумм= Ф1+ Ф2 =6+(-5,5)=0,5 усл. ед.

Возникший суммарный магнитный магнитный поток индуктирует электрический ток во вторичной обмотке который проходя через магнитоэлектрическое реле приводит его в работу, а оно, в свою очередь, размыкает подвижные контакты отключая электрическую цепь.

Проверка работоспособности УЗО осуществляется нажатием кнопки «ТЕСТ». Нажатие данной кнопки искусственно создает в УЗО утечку тока, что должно привести к отключению УЗО.

Схема подключения УЗО.

ВАЖНО! Так как в УЗО отсутствует защита от сверхтоков, при любой схеме его подключения должна быть предусмотрена так же установка автоматического выключателя, для защиты УЗО от токов перегрузки и короткого замыкания.

Подключение УЗО осуществляется по одной из следующих схем, в зависимости от типа сети:

Подключение УЗО без заземления:

Такая схема применяется, как правило, в зданиях со старой электропроводкой (двухпроводной), в который отсутствует заземляющий провод.

Подключение УЗО с заземлением:

Схема подключения УЗО в электросети системы ТN-C-S (когда нулевой проводник разделяется на нулевой рабочий и нулевой защитный):

Схема подключения УЗО в электросети системы ТN-S (когда нулевой рабочий и нулевой защитный проводники разделены):

ВАЖНО! В зоне действия УЗО нельзя объединять нулевой защитный (провод заземления) и нулевой рабочий проводники! Другими словами нельзя в схеме, после установленного УЗО, соединять между собой рабочий ноль (синий провод на схеме) и провод заземления (зеленый провод на схеме).

Ошибки в схемах подключения из-за которых выбивает УЗО.

Как было сказано выше УЗО срабатывает на токи утечки, т.е. если сработало УЗО — это значит, что произошло попадание человека под напряжение или по какой либо причине оказалась повреждена изоляция электропроводки или электрооборудования.

Но что если УЗО самопроизвольно срабатывает и при этом повреждений нигде нет, а подключенное электрооборудование исправно? Возможно все дело в одной из следующих ошибок в схеме сети защищаемой УЗО.

Одной из самых распространенных ошибок является объединение нулевого защитного и нулевого рабочего проводника в зоне действия УЗО:

В этом случае величина тока выходящего из сети через УЗО по фазному проводу будет больше чем величина тока возвращающегося в сеть по нулевому проводнику т.к. часть тока будет протекать мимо УЗО по проводнику заземления, что приведет к срабатыванию УЗО.

Так же, часто встречаются случаи использования в качестве нулевого рабочего проводника проводник заземления или стороннюю проводящую заземленную часть (например арматуру здания, систему отопления, водопроводную трубу). Такое, подключение как правило происходит при повреждении нулевого рабочего проводника:

Оба этих случая приводят к тому, что УЗО выбивает, т.к. ток выходящий из сети по фазному проводу ток через УЗО не возвращается обратно в сеть.

Как выбрать УЗО? Типы и характеристики УЗО.

Что бы правильно подобрать УЗО и исключить возможность ошибки воспользуйтесь нашим онлайн калькулятором расчета УЗО по мощности.

УЗО выбирается по его основным характеристикам. К ним относятся:

  1. Номинальный ток — максимальный ток при котором УЗО способно длительно работать не теряя свою работоспособность;
  2. Дифференциальный ток — минимальный ток утечки при котором УЗО произведет отключение электрической цепи;
  3. Номинальное напряжение — напряжение при котором УЗО способно длительно работать не теряя свою работоспособность
  4. Тип тока — постоянный (обозначается «-«) или переменный (обозначается «

»);

  • Условный ток короткого замыкания — ток который кратковременно может выдержать УЗО до момента пока не сработает защитная аппаратура (предохранитель или автоматический выключатель).
  • Выбор УЗО основывается на следующих критериях:

    — По номинальному напряжению и типу сети: Номинальное напряжение УЗО должно быть больше либо равно номинальному напряжению защищаемой им цепи:

    Uном. УЗО Uном. сети

    При однофазной сети требуется двухполюсное УЗО, при трехфазной сетичетырехполюсное.

    — По номинальному току: согласно пункта 7.1.76. ПУЭ использование УЗО в групповых линиях, не имеющих защиты от сверхтока, без дополнительного аппарата, обеспечивающего эту защиту не допускается, при этом необходима расчетная проверка УЗО в режимах сверхтока с учетом защитных характеристик вышестоящего аппарата, обеспечивающего защиту от сверхтока.

    Из сказанного выше следует, что перед УЗО должен стоять аппарат защиты (автоматический выключатель или дифференциальный автоматический выключатель) именно по току этого вышестоящего аппарата защиты необходимо выбирать номинальный ток УЗО исходя из условия, что номинальный ток УЗО должен быть больше либо равен номинальному току установленного до него аппарата защиты:

    Iном. УЗО⩾ Iном. аппарата защиты

    При этом рекомендуется что бы номинальный ток УЗО был на ступень больше номинального тока вышестоящего аппарата защиты (например если перед УЗО установлен автомат на 25 Ампер УЗО рекомендуется ставить с номинальным током 32 Ампера)

    Справочно — стандартные значения номинальных токов УЗО: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 20А, 25А, 32А, 40А, 50А, 63А и т.д.,

    — По дифференциальному току:

    Дифференциальный ток — это одна из главных характеристик УЗО которая показывает при какой величине тока утечки УЗО отключит цепь.

    В соответствии с пунктом 7.1.83. ПУЭ: Суммарный ток утечки сети с учетом присоединяемых стационарных и переносных электроприемников в нормальном режиме работы не должен превосходить 1/3 номинального тока УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети — из расчета 10 мкА на 1 м длины фазного проводника. Т.е. дифференциальный ток сети можно рассчитать по следующей формуле:

    где: Iсети — ток сети (рассчитанный по формуле выше), в Амперах; Lпровода — общая длина проводки защищаемой электросети в метрах.

    Рассчитав Δ Iсети принимаем ближайшее большее стандартное значение дифференциального тока УЗО Δ IУЗО:

    Δ IУЗО Δ Iсети

    Стандартными величинами дифференциального тока УЗО являются: 6, 10, 30, 100, 300, 500мА

    Дифференциальные токи: 100, 300 и 500мА применяются для защиты от пожаров, а токи : 6, 10, 30мА — для защиты от поражения человека электрическим током. При этом токи 6 и 10мА применяются, как правило, для защиты отдельных потребителей и помещений с повышенной опасностью, а дифференциальный ток 30мА подходит для общей защиты электросети.

    В случае если УЗО необходимо для защиты от поражения электрическим током, а по произведенному расчету ток утечки составил более 30мА необходимо предусмотреть установку нескольких УЗО на разные группы линий, например одно УЗО для защиты розеток в комнатах, а второе для защиты розеток в кухне, снизив тем самым мощность проходящую через каждое УЗО и как следствие снизив ток утечки сети, т.е. в таком случае расчет необходимо будет производить для двух или более УЗО которые будут установлены на разные линии.

    — По типу УЗО:

    УЗО бывают двух типов: электромеханическое и электронное. Принцип работы электромеханического УЗО мы рассматривали выше, его основным рабочим органом является дифференциальный трансформатор (магнитопровод с обмоткой) который сравнивает величины уходящего в сеть тока и тока возвращающегося из сети, а в электронном эту функцию выполняет электронная плата для работы которой необходимо напряжение.

    Представим ситуацию: по какой-то причине «пропал» ноль (например отгорел нулевой проводник), при этом если в сети установлено электронное УЗО его электронная плата обесточится и в случае, если человек коснувшись фазного провода попадет под напряжение данное УЗО не сработает, электромеханическое же УЗО сохранит свою работоспособность даже в случае отсутствия напряжения и отключит электрическую цепь, поэтому предпочтительнее использовать именно электромеханическое УЗО.

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Устройство УЗО и принцип действия

    Рад приветствовать вас, уважаемые читатели сайта elektrik-sam.info.

    В этой статье мы подробно рассмотрим устройство и принцип работы устройства защитного отключения УЗО, рассмотрим на примерах как работает УЗО.

    УЗО относятся к электрическим аппаратам защиты, как и автоматические выключатели. Для чего же были придуманы эти интересные устройства, неужели установки автоматических выключателей недостаточно?

    Со временем изоляция проводов стареет, так же она может быть повреждена, могут ослабнуть контактные соединения токоведущих частей приборов. В результате этих факторов появляются утечки тока, которые могут вызвать искрение и привести к возгоранию.

    Также человек может случайно коснуться рукой за оголенный фазный провод, который находится под напряжением. Дети, оставшись без присмотра родителей, могут «изучать» электричество, вставляя в розетку металлический предмет. В этом случае человека ударит током, произойдет утечка тока через тело на землю, а это очень опасно, ведь величина тока в этом случае может достигать нескольких сотен миллиампер.

    Обычные автоматические выключатели на такую «незначительную» для них утечку тока не отреагируют. Они срабатывают только на токи перегрузки и при коротком замыкании.

    Например, у автомата номиналом 10А с время-токовой характеристикой срабатывания В, тепловой расцепитель начнет срабатывать при токе, превышающем номинальный на 13%, т.е. 11,3А, причем время срабатывания будет больше одного часа. А при токе, превышающем номинальный на 45%, т.е. 14,5А в течение одного часа. Электромагнитный расцепитель автоматического выключателя будет срабатывать при значениях тока от 30А.

    Поэтому, чтобы защитить людей от поражения электрическим током и для предотвращения опасной утечки тока, которая может привести к пожару в результате повреждения изоляции электропроводки или бытовых приборов применяются устройства защитного отключения.

    У автоматических выключателей основной параметр – номинальный ток.

    Основной же параметр УЗО – это его чувствительность (номинальный отключающий дифференциальный ток, так называемая «уставка» по току утечки).

    Для защиты человека в бытовых электросетях от поражения электрическим током используют УЗО чувствительностью 10 и 30 мА.

    Для защиты от возможного возникновения пожара служат УЗО чувствительностью 100 или 300 мА.

    Если проводка неразветвленная, с малым количеством групп, то может использоваться одно общее УЗО на 30 мА, как противопожарное, так и для защиты человека от поражения электрическим током.

    Давайте рассмотрим устройство и принцип действия УЗО

    Конструктивно УЗО собрано в корпусе из диэлектрического материала. Внутри содержит трансформатор тока, выполненный на тороидальном ферромагнитном сердечнике с тремя обмотками – две первичные и одна обмотка управления.

    Две первичные токовые обмотки включены встречно. Первая обмотка образована фазным проводом, в ней протекает ток к нагрузке (к потребителю). Вторая обмотка образована нулевым проводом, в ней протекает обратный ток от нагрузки (от потребителя).

    Как работает УЗО?

    В обычном режиме, когда в цепи нет утечки, токи, протекающие в обоих обмотках равны по значению, но противоположно направленны. При протекании в обмотках, эти токи наводят в сердечнике трансформатора тока магнитные потоки. Наведенные магнитные потоки направлены встречно и компенсируют друг друга, поэтому суммарный магнитный ФΣ поток равен нулю.

    Предположим, что произошел пробой изоляции на корпус электроприбора.

    В этом случае токи в фазном и нулевом проводах будут различны. По фазному проводнику через УЗО кроме тока нагрузки IL будет протекать еще дополнительный ток — ток утечки ID, который для трансформатора тока будет дифференциальным (т.е. разностным). Разные по значению токи в первичных обмотках (IL + ID в фазном проводнике и IN, равный по значению IL, в нулевом рабочем проводнике) будут наводить в сердечнике разные по значению магнитные потоки. Результирующий магнитный поток будет отличен от нуля. По закону электромагнитной индукции он будет наводить электрический ток в обмотке управления. Если этот ток достигнет значения, достаточного для срабатывания электромагнитного реле Р, то оно сработает, приводя в движение расцепитель, силовые контакты УЗО разомкнутся. В результате электроустановка, находящаяся под защитой УЗО обесточится.

    Аналогично, если человек прикоснется к открытым токопроводящим частям или к корпусу электроприбора, на который произошел пробой изоляции, возникнет ток утечки, который потечет через тело человека на землю. В обмотке управления УЗО будет наводиться ток, который приведет к срабатыванию электромагнитного реле Р и цепь обесточится.

    Для периодического контроля исправности УЗО предусмотрена кнопка «Тест». При нажатии на нее искусственно создается ток утечки. Если УЗО исправно, оно должно срабатывать при нажатии на эту кнопку.

    По конструктивному исполнению УЗО бывают электромеханические (они не зависят от напряжения питания) и электронные (нуждаются в дополнительном источнике питания, который получают от контролируемой цепи, либо от дополнительного источника). В свою очередь, бывают электронные УЗО, которые отключают защищаемую цепь при исчезновении напряжения в питающей сети, и бывают не отключающие защищаемую цепь.

    Как не подключая к электрической сети, определить тип УЗО смотрите в статье Как определить тип УЗО — электромеханическое или электронное?

    Так же эти два типа УЗО различно ведут себя при аварийном режиме работы электросети, например, при достаточно часто встречающемся в наших домах обрыве нулевого провода.

    Теперь вы знаете, как работает УЗО.

    Подробно Устройство и принцип действия УЗО смотрите в видео


    Полезные статьи по теме:

    Про электрические аппараты защиты для “чайников”: устройство защитного отключения (УЗО)

    Представьте следующее – у Вас в ванной комнате установлена стиральная машина. Какой бы это не был известный бренд, поломке подвержены устройства любого производителя, и, допустим, происходит самое банальное – повреждается изоляция на сетевом шнуре и на корпусе машины оказывается потенциал сети. Причём это даже не поломка, машина продолжает работать, но уже становится источником повышенной опасности. Ведь если дотронутся одновременно и до корпуса машины и до водопроводной трубы, мы через себя замкнём электрическую цепь. И в большинстве случаев это закончится смертельным исходом.

    Что бы избежать этих страшных последствий и были придуманы УЗО – устройства защитного отключения.

    УЗО – это быстродействующий защитный выключатель, реагирующий на дифференциальный ток в проводниках, подводящих электроэнергию к защищаемой электроустановке – так звучит «официальное» определение. Говоря более понятным языком, устройство отключит потребителя от питающей сети, если произойдёт утечка тока на заземляющий проводник РЕ («землю»).

    Давайте рассмотрим принцип работы УЗО. Для большей наглядности на рисунке показана его «внутренняя» принципиальная схема:

    Основным узлом УЗО является дифференциальный трансформатор тока. По другому его называют трансформатор тока нулевой последовательности. Что бы нам было проще и не запутаться в терминах, назовём это узел просто трансформатор тока.

    Как видно из рисунка, в данном случае он имеет три обмотки. Первичная и вторичная обмотки включены в фазный и нулевой провод соответственно, а третья обмотка – к пусковому органу, который выполняется на чувствительных реле или электронных компонентах.

    Пусковой органсвязан с исполнительным управляющим устройством, который включает в себя силовую контактную группу с механизмом привода. Тестовая кнопка служит для проверки и контроля исправности УЗО. Сейчас представьте, что к выходу нашей схемы подключили нагрузку. Естественно, в цепи сразу возникнет ток, который будет протекать через обмотки I и II. Для дальнейшего рассмотрения принципа работы УЗО перейдём к более наглядной схеме:

    В нормальном режиме, при отсутствии тока утечки, в цепи по проводникам, проходящим сквозь окно магнитопровода трансформатора тока протекает рабочий ток нагрузки. Именно эти проводники образуют встречно включенные первичную и вторичную обмотки трансформатора тока. Данные токи будут равны по величине и противоположны по направлению: I1 = I2. Они наводят в магнитном сердечнике трансформатора тока равные, но встречно направленные магнитные потоки Ф1 и Ф2. Получается, что результирующий магнитный поток равен нулю, ток в третьей (исполнительной) обмотке дифференциального трансформатора также равен нулю и пусковой орган 2 находится в этом случае в состоянии покоя и УЗО функционирует в нормальном режиме.

    При прикосновении человека к открытым токопроводящим частям или к корпусу электроустройства, на который произошел пробой изоляции по фазной (первичной) обмотке трансформатора тока кроме тока нагрузки I1 протекает дополнительный ток – ток утечки (на схеме обозначен IΔ), являющийся для трансформатора тока дифференциальным (разностным: I1-I2= IΔ).

    Получается, что токи у нас неравны, следовательно, неравны и магнитные потоки, которые уже не компенсируют друг друга. Из-за этого в третьей обмотке возникает ток. Если этот ток превышает установленное значение, то срабатывает пусковой орган, воздействует на исполнительный механизм 3.

    Исполнительный механизм, состоящий из пружинного привода, спускового механизма и группы силовых контактов, размыкает электрическую цепь, в результате чего установка отключается от сети. Для осуществления периодического контроля исправности (работоспособности) УЗО предусмотрена кнопка тестирования 4. Она включена последовательно с резистором. Номинал резистора подобран таким образом, что бы разностный ток был равен паспортному току утечки срабатывания УЗО (о параметрах УЗО поговорим позже). Если при нажатии на эту кнопку УЗО срабатывает, значит, оно исправно. Как правило, это кнопка обозначается «TEST».

    Трёхфазные устройства защитного отключения работают примерно по такому же принципу, как и однофазные. В трехфазных УЗО через окно сердечника проходят четыре провода – три фазных и нулевой. Принципиальная электрическая схема простейшего трехфазного УЗО приведена на рисунке:

    Трёхфазное УЗО включает в себя выключатель 1, которым управляет элемент 2, получающий сигнал на отключение с вторичной обмотки 3 трансформатора тока 4, сквозь окно которого проходят нулевой рабочий провод N и фазные провода L1, L2 и L3 (5).

    При равенстве нагрузки в нулевом и фазном (или в трех фазных) проводах их геометрическая сумма равна нулю (ток в фазном проводе однофазного УЗО течет в одном направлении, а ток в нулевом проводе точно такого же значения течет в противоположном направлении). Поэтому тока во вторичной обмотке трансформатора тока нет.

    При утечке тока на заземленный корпус электроприемника, а также при случайном прикосновении стоящего на земле или на токопроводящем полу человека к фазному проводу электрической сети, равенство токов в первичной обмотке трансформатора тока нарушится, поскольку по фазному проводу, помимо тока нагрузки, будет проходить ток утечки, и в его вторичной обмотке появится ток – точно так, как и рассматриваемом выше описании работы однофазного УЗО. Протекающий во вторичной обмотке трансформатора ток воздействует на управляющий элемент 2, который через выключатель 1 отключает потребителя от питающей сети. Внешний вид трёхфазного УЗО показан на рисунке:

    Рассмотрим практические схемы включения УЗО в распределительных щитах.
    Схема включения УЗО при однофазном вводе. Здесь применена схема включения с разделённой нулевой (N) и «земляной» (РЕ) шинами. Как Вы видите на рисунке, УЗО (5) установлено после вводного автоматического выключателя, а после него установлены автоматические выключатели для защиты и коммутации отдельных шлейфов. Забегая вперёд, хочу отметить, что наличие связки автомат – УЗО обязательно, так как УЗО не обеспечивает токовую защиту, как тепловую, так и от коротких замыканий. Вместо этой «комбинации» – автомат – УЗО, можно использовать одно универсальное устройство. Впрочем, об этом немного позже.

    Схема включения УЗО при трёхфазном вводе. В отличие от предыдущей схемы здесь обеспечивается защита как однофазных, так и трёхфазных потребителей. Кроме того, используется совмещение по вводу нулевой и «земляной» шин (PEN). Прибор учёта электроэнергии – электросчётчик – включен между вводным автоматом и УЗО. Как Вы помните из обзоров по схемам учёта, все коммутационные аппараты, которые установлены до прибора учёта в обязательном порядке подлежат пломбировке энергоснабжающей организацией. Следовательно, конструкция вводного автоматического выключателя должна предусматривать эту возможность.

    До этого мы говорили только об электромеханических УЗО. Но если Вы помните, я упоминал о том, что иногда встречаются электронные устройства. В принципе, электронное УЗО строится по той же схеме, что и электромеханическое.

    Вместо чувствительного магнитоэлектрического элемента используют устройство сравнения (например, самый распространенный пример – компаратор). Для такой схемы нужен свой встроенный блок питания – ведь нужно чем-то питать электронную схему.

    Разностный ток имеет очень малую величину, следовательно, его нужно усиливать и преобразовывать в уровень напряжения, которое подается на устройство сравнения – компаратор. Всё это, конечно, понижает общую надёжность устройства, по сравнению с электромеханическим, здесь как раз тот случай – чем проще, тем лучше. Да и честно говоря, мне пока вообще не попадались сертифицированные электронные УЗО. Следовательно, сказать что-то хорошее или плохое про них я не могу. Поэтому, оставим в стороне электронные УЗО и остановимся на одном из главных моментов в рассмотрении электромеханических устройств защитного отключения – их параметров:

    УЗО имеют следующие основные параметры:

    тип сети – однофазная (трёхпроводная) или трехфазная (пятипроводная)

    номинальное напряжение -220/230 – 380/400 В

    номинальный току нагрузки – 16, 20, 25, 32, 40, 63, 80, 100 А

    номинальный отключающий дифференциальный ток – 10, 30, 100, 300 мА

    тип дифференциального тока – AC (переменный синусоидальный ток, возникший внезапно либо медленно нарастающий), A (как и AC, дополнительно – выпрямленный пульсирующий ток), B (переменный и постоянный), S (задержка времени срабатывания, селективное), G (как и селективное, только время задержки меньше).

    Хочу отметить один важный момент, касающийся параметров УЗО. Многих вводит в заблуждение номинальный ток нагрузки, нанесённый на корпусе устройства, и его принимают за такой же параметр, как и в автоматическом выключателе. Однако этот параметр в УЗО характеризует только его «пропускную токовую способность», может этот выражение и не совсем корректное, но я его ввёл для доступности понятия термина «номинальный ток нагрузки УЗО».

    Ток нагрузки УЗО ограничить не в состоянии и его необходимо защищать от токовых перегрузок и токов короткого замыкания автоматическими выключателями, которые как раз и обеспечивают защиту и от перегрузки по току, и от токов короткого замыкания. Ток нагрузки УЗО следует выбирать так, чтобы он был на ступень (номинального ряда токов) больше номинала тока автоматического выключателя защищаемой линии. То есть, если имеется нагрузка, защищенная автоматическим выключателем на ток 16 Ампер, то УЗО следует выбирать на ток нагрузки 25 Ампер.

    Здесь возникает логичный вопрос – а почему бы не объединить в одном корпусе и автоматический выключатель и УЗО, особенно в случае, когда УЗО задействовано на защиту только одного силового шлейфа? Ведь в этом случае они всё равно работают «в паре». Этот момент был немного затронут в предыдущей статье. Что ж, вопрос вполне закономерный и такие устройства, конечно, существуют. Называются они дифференциальные автоматические выключатели или просто диффавтоматы.

    На рисунке Вы как раз видите такое устройство. Здесь изображён трёхфазный дифференциальный автомат. Как и в трёхфазном УЗО, он имеет по четыре зажима – фазные и нулевой и кнопку «TEST». Если останавливается на его внутреннем устройстве, то что-то новое здесь сказать сложно. Это автоматический выключатель и УЗО в «одном флаконе».

    Стоимость диффавтоматов довольно высокая. Например, трёхфазные модели известных зарубежных производителей имеют стоимость порядка 100 Евро. Относительно дорогое удовольствие. Однако связка АВ+УЗО будет иметь примерно сопоставимую стоимость, да и вместо четырёх стандартных 17,5 мм модулей на DIN-рейке(при трёхфазном варианте ), займет восемь. Так что в некоторых случаях диффавтоматы всё же предпочтительнее, особенно если в распределительном щитке имеется проблема наличия свободного места.

    Как проверить работоспособность УЗО или диффавтомата? Про кнопку «TEST» мы уже упоминали. Однако такая проверка является очень поверхностной и не всегда отражает реальную суть вещей. Поэтому для объективной проверки применяют тестовые схемы или специализированные приборы.

    Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

    Принцип работы и устройство УЗО (устройства защитного отключения)

    Для многих уже не новость, что современная бытовая электрическая сеть обязательно должна иметь защиту УЗО. Тем, кто ещё ничего не знает о таких защитных элементах, скажем, что это – основа человеческой безопасности. Также устройство способствует предотвращению пожаров, вызванных возгоранием электрической проводки. Поэтому знакомство с этим элементом защиты и автоматики не будет лишним. Давайте поговорим подробно об устройстве, из чего оно конструктивно устроено и каков принцип действия УЗО?

    Как возникает ток утечки?

    Чуть ниже мы рассмотрим для чего необходимо УЗО, но сначала разберёмся, что такое токовая утечка? Вся работа устройства связана именно с этим понятием.

    Если сказать простыми словами, то утечкой тока называют его протекание из фазного проводника в землю по пути, который для этого является нежелательным и совсем непредназначенным. Это может быть корпус электрического оборудования или бытового прибора, прутья металлической арматуры либо водопроводные трубы, сырые оштукатуренные стены.

    Токовая утечка возникает при нарушениях изоляции, которые могут произойти по ряду причин:

    • старение в результате длительного срока эксплуатации;
    • механическое повреждение;

    • термическое воздействие в случае, когда электрооборудование работает в режиме перегруза.

    Опасность токовой утечки состоит в том, что при нарушении изоляции электрической проводки на описанных выше объектах (корпус прибора, водопроводная труба или оштукатуренная сырая стена) появится потенциал. Если человек к ним прикоснётся, то выступит в роли проводника, через который ток будет уходить в землю. Величина этого тока может быть таковой, что вызовет самые печальные последствия, вплоть до смерти.

    На видео демонстрация действия УЗО

    Как определить, есть ли в вашем доме токовая утечка? Первым признаком этого явления станет еле ощутимое воздействие электричества, то есть когда вы к чему-то прикасаетесь, вас как бы слегка бьёт током. Наиболее часто это опасное явление наблюдается в ванных комнатах. Для того чтобы гарантировать себе безопасность в собственной же квартире, её надо оборудовать защитными элементами.

    Применяют для этой цели УЗО (расшифровываются как устройства защитного отключения) либо дифференциальные автоматы.

    Что лежит в основе срабатывания УЗО?

    Принцип работы УЗО основывается на методе измерений. На входе и выходе регистрируются показания протекающих через трансформатор токов.

    Если входное токовое показание выше, чем на выходе, значит, в цепи где-то имеется токовая утечка и защитное устройство отключается. Если эти показания одинаковые, то срабатывания УЗО не происходит.

    Поясним немного подробнее этот принцип для двухпроводной и четырёхпроводной системы. УЗО в однофазной сети не срабатывает, когда по проводникам фазы и нейтрали протекают одинаковой величины токи. Для трёхфазной сети необходимы одинаковые показания тока в нулевом проводе и суммы токов, проходящих по фазным жилам. В обоих вариантах сети, когда есть разница в токовых величинах, это свидетельствует об изоляционном пробое. Значит, через это место пройдёт токовая утечка, и устройство защитного отключения сработает.

    УЗО после этого нельзя включать, пока не будет обнаружено место повреждения.

    Давайте весь этот теоретический принцип работы УЗО переведём на практический пример. В домашнем распредщитке произведена установка устройства защитного отключения с двумя полюсами. К его верхним клеммам выполнено подключение вводного двухжильного кабеля (фазы и ноля). На нижние клеммы подсоединяются ноль с фазой, идущие к какой-то нагрузке, предположим, в розетку, питающую водонагревательный бойлер.

    Защитное заземление корпуса бойлера выполняется проводом в обход УЗО.

    Если в электросети нормальный режим, то перемещение электронов осуществляется по фазному проводу от вводного кабеля на ТЭН бойлера через УЗО. Обратно они двигаются на землю снова через УЗО, но уже по нейтральному проводу.

    Проходящие через устройство токи имеют одинаковую величину, но направление у них противоположное (встречное).

    Предположим ситуацию, когда на ТЭНе повредилась изоляция. Теперь ток через воду частично окажется на корпусе бойлера, а потом уйдёт в землю через провод защитного заземления. Остаток тока вернётся по нейтральному проводу через УЗО, только он уже будет меньше входящего ровно на показание токовой утечки. Эту разницу определяет УЗО, и если цифра будет выше уставки срабатывания, устройство сразу реагирует на разрыв цепи.

    Такой же принцип действия и срабатывания УЗО, если человек прикоснётся к оголённому проводнику или корпусу бытового прибора, на котором появился потенциал. Токовая утечка в такой ситуации происходит через человеческое тело, устройство моментально обнаруживает это и прекращает подачу электричества путём отключения.

    Серьёзных травм не последует, потому что УЗО реагирует почти моментально.

    Конструктивное исполнение

    Конструкция УЗО поможет нам разобраться, каким образом оно реагирует на токовую утечку. Основными рабочими узлами УЗО являются:

    • Трансформатор дифференциального тока.
    • Механизм, с помощью которого происходит разрыв электрической цепи.
    • Электромагнитное реле.
    • Проверочный узел.

    К трансформатору выполнено подключение встречных обмоток – фазы и ноля. Когда сеть работает в нормальном режиме, то эти проводники в трансформаторном сердечнике способствуют наведению магнитных потоков, которые имеют встречное направление относительно друг друга. За счёт противоположной направленности магнитный поток в сумме равняется нулю.

    Наглядно устройство и принцип действия УЗО на следующем видео:

    Во вторичной трансформаторной обмотке выполнено подключение электромагнитного реле, при нормальных рабочих условиях оно находится в покое. Возникла токовая утечка, и картина сразу меняется. Теперь по фазному и нейтральному проводникам начинают проходить различные токовые величины. Соответственно и на трансформаторном сердечнике теперь не будет равных магнитных потоков (они будут разными и по величине, и по направлению).

    Во вторичной обмотке появится ток и, когда его значение достигнет заданного, сработает электромагнитное реле. Его подключение выполнено в связке с расцепляющим механизмом, он мгновенно отреагирует и разорвёт цепь.

    В качестве проверочного узла служит обычное сопротивление (какая-то нагрузка, подключение которой выполнено, минуя трансформатор). С помощью этого механизма имитируется токовая утечка и проверяется работоспособное состояние устройства. Каков принцип работы этой проверки?

    Имеется специальная кнопка «ТЕСТ» на УЗО. Её главное назначение – подать ток с фазного провода на проверочное сопротивление и далее на нейтральный проводник, минуя трансформатор. За счёт сопротивления ток на входе и на выходе будет разный, и созданный небаланс запустит механизм отключения. Если при проверке УЗО не отключилось, значит, придётся отказаться от его установки.

    У разных производителей УЗО внутреннее конструктивное исполнение может отличаться, но общий принцип работы остаётся неизменным.

    Все устройства различаются по принципу срабатывания. Они бывают электронного и электромеханического типа. Электронные УЗО отличаются сложной схемой, им для работы необходимо дополнительное питание. Устройствам электромеханического типа внешнее напряжение не нужно.

    Как обозначается УЗО на схеме?

    Для подключаемых УЗО имеется по два общепринятых символа на схемах.

    Несмотря на конструктивную сложность, обозначение устройства постарались сделать максимально простым. Лишнего ничего нет, только следующие элементы:

    1. Трансформатор дифференциального тока, который схематически изображается как сплюснутое кольцо.
    2. Полюса (два для однофазной сети, четыре для трёхфазной сети).
    3. Выключатель, действующий на разрыв контактов.

    При этом именно полюса имеют два вида обозначения:

    • Иногда они рисуются ровными вертикальными линиями в зависимости от количества (две или четыре).
    • В других случаях из соображения компактности рисуется одна вертикальная ровная линия, а количество полюсов наносится на неё в виде маленьких косых чёрточек.

    Основные рабочие характеристики УЗО

    Чтобы устройство сработало в нужный момент, необходимо его правильно выбрать согласно рабочим характеристикам и подключить.

    • Основным параметром является значение номинального тока. Это максимальный ток, который выдерживает данное устройство при длительном эксплуатационном сроке, оставаясь в рабочем состоянии и сохраняя защитные характеристики. Вы найдёте эту цифру на лицевой панели устройства, она должна соответствовать одному из показаний в стандартном ряду – 6, 10, 16, 25, 32, 40, 63, 80, 100 А. Этот параметр УЗО зависит от нагрузки защищаемой линии и сечения проводников.

    Схема подключения УЗО предусматривает совместную установку этого устройства с автоматическими выключателями.

    Это важно помнить, потому что УЗО защищает лишь от токовых утечек, а автомат среагирует на отключение цепи в режиме короткого замыкания и перегруза.

    На видео показано, можно ли подключать УЗО, если в квартире нет заземления:

    По номинальному току УЗО надо выбирать на порядок выше, чем установленный с ним в паре автомат.

    • Следующий важный параметр – номинальный отключающий дифференциальный ток. Это и есть необходимое значение токовой утечки для отключения УЗО. У дифференциальных токов также существует стандартный ряд, величины в нём нормируются в миллиамперах – 6, 10, 30, 100, 300, 500 мА. Но на УЗО эту цифру обозначают в амперах – соответственно, 0,006, 0,01, 0,03, 0,1, 0,3, 0,5 А. Этот параметр вы тоже найдёте на корпусе устройства.

    Чтобы защищать людей на УЗО надо выставлять уставку по току утечки 30 мА, потому что величины, которые выше, приведут к поражению, электротравме и даже летальному исходу. Так как наиболее опасной считается среда во влажных помещениях, то на защищающих их УЗО выбирают уставку 10 мА.

    Надеемся, что поняв основное назначение УЗО и принцип его работы, вы не станете пренебрегать этим важным элементом защиты, и сделаете свою жизнь безопасной.

    Устройство и принцип работы УЗО

    Подписка на рассылку

    Одним из основных устройств, которое должно быть в электрическом щите каждого потребителя, является устройство защитного отключения (УЗО). В зависимости от номинального тока срабатывания, УЗО может обеспечивать защиту потребителя как от поражения электрическим током, так и от пожара. Для защиты от поражения электрическим током ПУЭ рекомендует применять аппарат с номинальным током утечки не более 30 мА, для защиты от возгорания – до 300 мА. Но в обоих случаях устройство и принцип действия УЗО одинаковы.

    Также следует отметить, что существует два типа УЗО: электромеханическое и электронное. Сегодня в нашей статье мы расскажем о том, как устроено и как работает электромеханическое УЗО.

    Устройство УЗО

    Электромеханическое УЗО состоит из следующих элементов:

    1. корпус УЗО;
    2. верхние и нижние клеммы для подключения провода или кабеля;
    3. дугогасительные камеры, обеспечивающие быстрое гашение дугового разряда, который может образовываться при размыкании контактов;
    4. подвижные контакты;
    5. выпрямитель, предназначенный для преобразования переменного тока в постоянный;
    6. дифференциальный трансформатор, состоящий из первичной обмотки, выполненной в несколько витков силовыми проводами и подключенной к подвижному и неподвижному контактам, и вторичной обмотки из тонкого медного провода, концы которой подключены к выпрямителю;
    7. поляризованное реле, которое в случае обнаружения тока утечки воздействует на механизм расцепления;
    8. рычаг управления со спусковым механизмом;
    9. индикатор дифференциального тока, который появляется в случае срабатывания УЗО;
    10. кнопка “Тест”;
    11. подвижный (в виде пружины) и неподвижный контакты кнопки “Тест”;
    12. токоограничивающий резистор, обеспечивающий имитацию тока утечки.

    Принцип работы электромеханического УЗО

    Рассмотрим принцип работы функции “Тест”: при нажатии кнопки пружина, соединенная с фазным полюсом, касается пластинки контакта, который подключен к клемме полюса “N” УЗО. При этом ток начинает протекать через токоограничивающий резистор, который имитирует ток утечки и приводит к срабатыванию устройства. Если при нажатии копки «Тест» УЗО не выключилось, это означает, что оно бракованное или же вышло из строя.

    Далее рассмотрим принцип работы УЗО. В нормальном режиме при подаче питания к электроприбору через УЗО магнитные поля, создаваемые проводами первичной обмотки, нейтрализуют друг друга. Поэтому на вторичной обмотке напряжение не возникает и ток протекает в штатном режиме.

    При появлении тока утечки, например, вследствие пробоя изоляции кабеля, в трансформаторе создается магнитный поток, который вызывает напряжение на вторичной обмотке. В свою очередь напряжение подается через выпрямитель на поляризованное реле, которое в случае превышения предельного значения тока утечки приводит к срабатыванию УЗО.

    При отсутствии заземления аппарат не будет реагировать, и работа УЗО будет протекать в штатном режиме до момента возникновения в цепи утечки на землю (например, если потребитель дотронется до металлического корпуса электроприбора). При таком касании возникнет разность токов, которая приведет к мгновенному срабатыванию УЗО.

    Таким образом, мы рассказали, как устроено и как работает электромеханическое УЗО. Вы также можете посмотреть наше видео, в котором детально показан принцип работы УЗО в однофазной сети.

    Устройство защитного отключения — как работает, типы, схемы и как проверить

    Как работает УЗО? Какие различия между ним и обычным дифавтоматом? Есть ли преимущества? Как подключать? Всё это далее в статье!

    Что такое УЗО и как расшифровывается в электрике

    УЗО – устройство защитного отключения. Это альтернатива дифференциальной автоматике, которая сама срабатывает в определённых условиях и отличается принципом работы и триггерами (причинами срабатывания).

    Само УЗО – это аппарат, который предназначается для моментального разрыва цепи при перегрузке тока небаланса указанного значения.

    Что такое селективное УЗО

    УЗО селективного действия выделяется из ряда обычных увеличенным временем срабатывания. Такая реализация позволяет при каких-либо сбоях в электрической цепи с последовательно подключенными устройствами защиты выключать не всю проводку, а только определенный её сегмент.

    Принцип работы УЗО

    УЗО – это общий термин для всех типов устройств с остаточным током (механическое переключающее устройство или объединение устройств), которые по определению предназначены для размыкания контактов, когда ток утечки достигает заданного значения при определенных условиях. Наиболее распространенные типы:

      Автоматический выключатель с остаточным током(RCCB). Механическое переключающее устройство, предназначенное для создания, переноса и устранения токов при стандартных нормах работы и для разрыва контактов, когда остаточный ток достигает определённого значения при указанных обстоятельствах. В зависимости от возраста этих устройств они будут соответствовать стандартам BS EN 61008 или BS 4293.
      Всемирный Британский стандарт BS 4293 был отменен 1 июля 2000 года, а его мораторий закончился в июле 2005 года, что означает, что производители продолжали выпускать устройства остаточного тока, соответствующие BS 4293, до 2005 года, при условии, что устройства будут выпускаться до июля 2000 года. В РФ с 12 января 2000 года действуют свои ГОСТы.

    http://docs.cntd.ru/document/1200102087
    http://vsegost.com/Catalog/27/27475.shtml

  • Автоматический выключатель, включающий защиту от токов утечки (CBR) Автоматический выключатель, гарантирующий защиту от излишка нагрузки по току и включающий защиту от остаточного тока либо в виде интегральной схемы, либо в комбинации с аппаратом аварийного выключения, которое может быть установлено на заводе или в полевых условиях.
  • Розетка с интегрированным прибором аварийной дезактивации (SRCD). Розетка для стационарной установки, включающая в себя встроенную чувствительную цепь, благодаря которой переключающие контакты в цепи автоматически размыкаются при заданном значении остаточного тока.
  • Реле замыкания на землю. Устройство, включающее средства обнаружения тока замыкания на землю, сравнения его значения с рабочим значением тока замыкания на землю и подачи сигнала на соответствующее коммутационное устройство для размыкания защищенной цепи, когда ток замыкания на землю превышает это значение. Реле могут быть подключены напрямую или питаться от отдельного торроида. В настоящее время нет определенного стандарта для этого типа устройства.
  • Простыми словами, УЗО работает так:

    Представим человека, который обладает феноменальной реакцией. Он стоит возле электрощитка, и в руках у него вольтметр. Когда стрелка на нём превышает указанное значение, он выключает кнопку (размыкает сеть), чтобы ток не прошел дальше. Время, за которое он улавливает сигнал, называется «скорость срабатывания». Но на этом его работа не заканчивается: он должен будет замкнуть контакты обратно. Время повторного подключения называют «скорость возврата». Скорость тока в сети исчисляется тысячами циклов в секунду и, скорее всего, при наличии хорошего УЗО перебой даже не будет заметен.

    Чем меньше по времени будут занимать эти две операции, тем дороже будет стоить УЗО, так как длительное отсутствие тока в сети исчерпает запас остаточного напряжения, и прибор выключится. Чтобы не допускать такой ситуации, производители пытаются сократить скорость срабатывания по максимуму.

    Устройство остаточного тока – принцип действия

    Устройства остаточного тока контролируют ток, протекающий в цепи, с помощью тороида, который представляет собой небольшой трансформатор тока, специально разработанный для обнаружения токов замыкания на землю.

    Все проводники под напряжением будут проходить через эту катушку, токи, протекающие в проводниках под напряжением исправной цепи, будут уравновешены, и поэтому в торроиде ток не будет индуцироваться. Токоведущие проводники цепи включают в себя все фазные и нейтральные проводники. Когда в цепи присутствует замыкание на землю, ток будет течь к земле через ненормальный или непреднамеренный путь.

    Существует два типа технологий, доступных в устройствах остаточного тока, электромагнитных и электронных, и оба предлагают очень надежную работу. В электромагнитных устройствах используется очень чувствительный торроид, который управляет реле отключения, когда обнаруживает очень малые остаточные токи.

    Эти устройства обычно не требуют эталонного заземления и не подвержены временной потере питания, так как питание на отключение устройства напрямую зависит от тока повреждения. Электронным устройствам не нужен такой чувствительный торроид, поскольку электронные схемы внутри устройства усиливают сигнал для срабатывания реле отключения.

    Однако эти устройства часто требуют контрольного заземляющего провода, чтобы гарантировать, что устройство продолжит работать в случае потери нейтрали питания. Питание для отключения устройства берется как от тока повреждения, так и от источника питания.

    Эти устройства должны быть отключены при проведении испытаний сопротивления изоляции, чтобы предотвратить повреждение устройства и избежать неправильных результатов испытаний.

    Диапазон RCCB, дополнительные блоки CBR CB и два модуля RCBO – это электромагнитные устройства, а в одном модуле RCBO и реле защиты от замыканий на землю используются электронные технологии. Дополнения CBR MCCB доступны в обеих технологиях.

    • Ток, протекающий через торроид в исправной цепи: Ires = I1-I2 = 0
    • Ток, протекающий через торроид в цепи с замыканием на землю: Ires = I1-I2 = Ic + Id

    Этот ток замыкания на землю, известный как «остаточный ток» (Ires), рассматривается торроидом как дисбаланс. Когда величина этого остаточного тока достигает значения чувствительности IΔn устройства, оно срабатывает для размыкания контактов.

    Виды УЗО

    Остаточный ток повреждения может принимать различные формы сигналов в зависимости от характеристик нагрузки. Следующие типы УЗО определены в МЭК 60755 для надлежащей защиты различных форм остаточного тока:

    Тип AC

    УЗО типа AC определяют остаточные синусоидальные переменные токи. УЗО типа AC подходят для общего использования и охватывают большинство применений на практике.

    Тип А

    В дополнение к характеристикам обнаружения УЗО типа AC, УЗО типа A обнаруживают пульсирующий остаточный ток постоянного тока. Такие колебания могут быть вызваны диодной или тиристорной цепью выпрямителя в электронных нагрузках. УЗО типа A специально предназначены для использования в однофазных электронных нагрузках класса 1.

    Тип F

    УЗО типа F – это новый тип УЗО, недавно представленный в МЭК 62423 и МЭК 60755. В дополнение к характеристикам обнаружения УЗО типа А, УЗО типа F специально разработаны для защиты цепей, где могут использоваться однофазные драйверы с регулируемой скоростью. В этих цепях форма волны остаточного тока может быть составной из нескольких частот, включая частоту двигателя, частоту переключения преобразователя и частоту линии. В целях повышения энергоэффективности использование преобразователей частоты при определенных нагрузках (стиральная машина, кондиционер и т. д.) расширяется, и тип F RCD будет охватывать эти новые области применения.

    Тип F также обладает улучшенными характеристиками устойчивости к помехам (отсутствие срабатывания при импульсном токе). Они способны к отключению, даже если на синусоидальный или импульсный дифференциальный ток постоянного тока накладывается чистый постоянный ток 10 мА.

    Тип B

    УЗО типа B могут обнаруживать синусоидальный переменный ток, пульсирующий постоянный ток, составной многочастотный, а также плавный остаточный постоянный ток. Кроме того, условия отключения определяются с разными частотами – от 50 Гц до 1 кГц. В электрической распределительной сети переменного тока чистый остаточный постоянный ток может в основном генерироваться из трехфазных выпрямительных цепей, а также из некоторых конкретных однофазных выпрямителей.

    УЗО типа B предназначены для использования с нагрузками с трехфазным выпрямителем, такими как приводы с регулируемой скоростью, фотоэлектрическая система, станция зарядки электромобилей и медицинское оборудование.

    На схеме – определение различных типов УЗО с их основным применением и формами сигналов. Следует отметить, что различные типы УЗО (AC, A, F и B) вложены друг в друга, как русские куклы: тип B, например, также соответствует требованиям типа F, типа A и типа AC.

    Характеристики УЗО

    Номинальный ток

    Указывает порог срабатывания устройства: 6, 10, 16, 25, 50, 63 и т. д. (ампер). Номинальный ток одинаков как для УЗО, так и для автоматов.

    Быстродействие

    В маркировке дифавтоматов применяется индекс электрического действия, который маркирован буквой «B», «C» или «D». Она стоит перед показателем номинального напряжения, как у стандартных автоматов. Скорость действия является важной переменной характеристикой аварийного аппарата.

    Ток отключения (утечки)

    Обычно это число из набора: 10, 30, 100, 300 или 500 мА. Указывается данная характеристика треугольником (буквой «дельта»), которая стоит перед числом, характеризующим величину номинального тока утечки в миллиамперах, при котором активируется защита.

    Номинальное напряжение

    Важнейшим рабочим показателем автоматов и УЗО выступает номинал напряжения (220 вольт – для одной фазы или 380 вольт для трёх) – это обычное рабочее напряжение.

    Маркировка УЗО и дифавтоматов

    Рассмотрим все элементы маркировки:

    1. На этой позиции отмечается название и серия автомата. Видно, что он АВ-дифференционного типа с интегрированной защитой от нестабильных токов утечки. Прибор разработан к работе в сетях с одной фазой с переменным током с рабочим показателем 230 вольт (50 герц).
    2. На месте позиции № 3 (вверху) выступает такой показатель, как величина номинального дифф.тока при КЗ.
    3. Далее идёт визуальное изображение вида конкретного автомата (в нашем случае это тип «А», предназначенный для взаимодействия с утечками переменного или перманентного токов).
    4. Под номером 4 – схема модуля.
    5. Далее идёт описание аварийного механизма электромагнитного разъединителя (у нас это «С»).
    6. Сразу за ним располагается токовый номинал.
    7. В конце ставят значок «дельта» и пишут ток утечки в цифрах.

    Схема подключения УЗО

    Рассмотрим схемы для разных типов сетей. В зависимости от количества приборов и конфигурации, нужно выбрать правильную модель, совместимую с сетью.

    Схема подключения УЗО в однофазной сети

    Стандартная схема, которая применяется в большинстве жилых домов. Как видно из картинки, предохранитель в прямом смысле не пропустит резкий скачок напряжения дальше в сеть и спасёт приборы от поломки.

    Схема подключения УЗО в трехфазной сети

    Более сложный вариант подключения. Из-за фазового смещения нужно подключать УЗО другим способом, иначе от него не будет потльзы в трехфазной сети. Требует навыков и понимания темы, а лучше обратиться к мастеру.

    Схема подключения УЗО в трехфазной цепи

    Отличие УЗО от дифавтомата

    Главные отличия:

    1. УЗО активируется только тогда, когда в цепи есть ток утечки.
    2. Дифавтомат комбинирует в себе функции устройства аварийного отключения + автоматического предохранителя.

    То есть, дифавтомат срабатывает не только во время утечки тока, но и при коротком замыкании, а также перегрузке сети.

    Оба прибора выполняют схожие функции, но имеют разные спецификации работы. Выбор разновидности лежит на плечах инженера, но бывают сети, в которых обе разновидности отлично сочетаются и повышают уровень безопасности.

    Как проверить УЗО на работоспособность

    Самый простой и рабочий способ проверки УЗО – через кнопку ТЕСТ, которая находится на корпусе УЗО.

    Для проверки УЗО кнопкой не нужны никакие особые знания или специальный персонал.

    Что понадобится:

    1. Кусок электропровода.
    2. Электролампа (10–15 Вт).
    3. Патрон под неё.
    4. Несколько сопротивлений.
    5. Отвёртка.
    6. Бокорезы.
    7. Изолента.

    ВАЖНО! Если нет опыта в электрике или мало времени, лучше вызвать мастера, так как электрика может привести к травме. «Интуитивный» ремонт опасен для жизни и здоровья.

    Наглядная инструкция в видео:

    Защищает ли УЗО от короткого замыкания

    УЗО в момент прикосновения должно выключаться, спасая человеку жизнь. Кроме того, протекание тока через не отведённые под эту цель материалы может вызвать пожар. В строениях с легкой проводкой пожары от нарушения целосности изоляции происходят довольно часто. Тогда УЗО выполняет защитную функцию.

    Экономия на УЗО является грубейшей ошибкой, которую допускают даже опытные инженеры при обустройстве сетей. Дело в том, что даже самая надёжная автоматика может пострадать, если неправильно подключить её или если случится перепад. Тогда перебой в сети может уничтожить всё, что следует после предохранителя. Если же установлен УЗО, он возьмёт на себя весь удар и спасёт дорогостоящую технику от повреждений.

    ВАЖНО! УЗО не спасает от перегрузки и КЗ, для такой защиты УЗО ставят с одним автоматом или группой выключателей.

    Если посмотреть по-другому, то дифавтомат – это и есть УЗО и автовыключатель в одном корпусе. И он спасает сеть от лишней нагрузки, короткого замыкания и утечки тока. Так как автомат выполняет больше защитных характеристик линии, получается – это наилучшее решение по сравнению с УЗО.

    Как выбрать УЗО по мощности для квартиры и частного дома

    Нужно отталкиваться от характеристик. Среди наиболее важных тех.характеристик, на которые нужно опираться при выборе УЗО для бытовых целей, выделяют:

    • Номинальное напряжение сети: 220В (однофазная), либо 380В (трехфазная);
    • Количество полюсов: двухполюсный (если 1 фаза) и четырехполюсный (если 3 фазы);
    • Номинальный ток нагрузки может составлять 16А, 20А, 25А, 32А, 40А, 63А, 80А, 100А;
    • Номинальный отключающий дифференциальный ток (утечка) 6мА, 10мА, 30мА, 100мА, 300мА, 500мА;
    • Номинальный условный ток короткого замыкания — от 3кА до 15кА;
    • Коммутационная способность (обозначение «Im») — (новые изделия предлагают диапазон КС от 1000 до 1500 А);
    • Принцип работы: AC — срабатывание при переменном токе, А — переменный + постоянный пульсирующий, B — постоянный + переменный, S — присутствует выдержка времени перед срабатыванием, G — так же присутствует выдержка, но ее время меньше;
    • Конструкция: электронный (работает от сети), либо электромеханический (не требует питания).

    Непоследним фактором является и цена. УЗО – это тоже расходный материал, который требует замены со временем. Если квартира небольшая, то особого смысла покупать дорогое УЗО нет, тем более, что многие навороченные модели не так просты в установке, как более бюджетные «народные» варианты.

    Обозначение УЗО на однолинейной схеме

    По стандарту обозначение выглядит так:

    Все о сечении проводов автоматах и УЗО

    Таблица с типом сечений и областью применения:

    Причины срабатывания УЗО

    Главные причины:

    1. Обычная утечка тока в сети.
    2. Электроприборы, которые защищены данным устройством.
    3. Некорректная установка защитной автоматики.
    4. Неправильно выбранная модель.
    5. Прикосновение к оголённой жиле рукой (срабатывает защита).
    6. Брак самого механизма.
    7. Неправильное размещения ДВТ в линии электропроводке.
    8. КЗ «земли» и/или «нуля» при электромонтажных работах.
    9. Погодные условия (например, попадание влаги внутрь). В сырую погоду такая ситуация будет ощущаться максимально ярко. Влажность воздуха будет настолько большой, что проводимость тока через неё позволит УЗО срабатывать на выключение.

    Если проводился монтаж скрытой электропроводки, после чего трасса была закрыта шпаклевкой, может происходить отключение. Это обусловлено тем, что влажный раствор выступает хорошим проводником, который может вызывать утечку через микроскопические трещинки в проводке. Нужно ждать, пока раствор полностью высохнет, после чего проверять еще раз, активируется УЗО или нет. Чтобы такой ситуации не было, между трассой иногда устанавливают слой гидроизоляции или просто кладут полиэтиленовую плёнку, которая не пропустит влагу.

    Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

    Читайте также:  Что такое ограничители перенапряжения?
    Ссылка на основную публикацию